Pyroptosis-Derived Long Noncoding RNA Profiles Reveal a Novel Signature for Evaluating the Prognosis of Patients With Lung Adenocarcinoma

上睑下垂 随机森林 计算生物学 生物 计算机科学 生物信息学 人工智能 遗传学 程序性细胞死亡 细胞凋亡
作者
Yuhao Ba,Shutong Liu,Z. Wei,Nannan Zhao,Tong Qiao,Yuqing Ren,Lifeng Li,Yuyuan Zhang,Siyuan Weng,Hui Xu,Chunwei Li,Xiaoyong Ge,Xinwei Han
出处
期刊:JCO precision oncology [Lippincott Williams & Wilkins]
卷期号: (8)
标识
DOI:10.1200/po.23.00405
摘要

PURPOSE Long noncoding RNAs (lncRNAs) were recently implicated in modifying pyroptosis. Nonetheless, pyroptosis-related lncRNAs and their possible clinical relevance persist largely uninvestigated in lung adenocarcinoma (LUAD). MATERIALS AND METHODS A sum of 921 samples were collected from three independent data sets. We obtained pyroptosis-related genes from both the Molecular Signatures Database and relevant literature sources and used four machine learning techniques, comprising stepwise Cox, ridge regression, least absolute shrinkage and selection operator, and random forest. Multiple bioinformatics approaches were used to further investigate the underlying mechanisms. RESULTS In total, 39 differentially expressed pyroptosis genes were identified by comparing normal and tumor samples. Correlation analysis revealed 933 pyroptosis-related lncRNAs. Furthermore, univariate Cox regression determined 11 lncRNAs that exhibited stable associations with prognosis in the three cohorts, which were used to construct the pyroptosis-derived lncRNA signature. After analyzing the optimal results from four machine learning algorithms, we ultimately selected random forest to develop the pyroptosis-derived lncRNA signature. This signature was proven to be an independent prognostic factor and exhibited robust performance in three cohorts. CONCLUSION We provided novel insight and established a pyroptosis-derived lncRNA signature for patients with LUAD, exhibiting strong predictive capabilities in both the training and validation sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱莉完成签到,获得积分10
1秒前
SciGPT应助zimi采纳,获得10
3秒前
4秒前
无限的马里奥完成签到,获得积分10
4秒前
淡淡紫山发布了新的文献求助30
5秒前
6秒前
6秒前
6秒前
Jane发布了新的文献求助30
6秒前
6秒前
7秒前
11秒前
11秒前
火星上宛秋完成签到 ,获得积分10
11秒前
小4完成签到,获得积分10
12秒前
12秒前
科研通AI5应助锂离子采纳,获得10
12秒前
galioo3000发布了新的文献求助30
12秒前
宁为树发布了新的文献求助10
12秒前
思源应助安静的难破采纳,获得10
12秒前
13秒前
从容羽毛发布了新的文献求助10
13秒前
14秒前
15秒前
111发布了新的文献求助10
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得30
18秒前
Hanne应助科研通管家采纳,获得10
18秒前
甜甜醉波应助科研通管家采纳,获得20
18秒前
DADA应助科研通管家采纳,获得10
18秒前
肖博文发布了新的文献求助10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339