A novel joint extraction model based on cross-attention mechanism and global pointer using context shield window

计算机科学 接头(建筑物) 指针(用户界面) 背景(考古学) 窗口(计算) 机制(生物学) 护盾 人工智能 地质学 万维网 建筑工程 岩石学 古生物学 哲学 认识论 工程类
作者
Zhengwei Zhai,Rongli Fan,Jie Huang,Naixue Xiong,Lijuan Zhang,Jian Wan,Lei Zhang
出处
期刊:Computer Speech & Language [Elsevier BV]
卷期号:87: 101643-101643
标识
DOI:10.1016/j.csl.2024.101643
摘要

Relational triple extraction is a critical step in knowledge graph construction. Compared to pipeline-based extraction, joint extraction is gaining more attention because it can better utilize entity and relation information without causing error propagation issues. Yet, the challenge with joint extraction lies in handling overlapping triples. Existing approaches adopt sequential steps or multiple modules, which often accumulate errors and interfere with redundant data. In this study, we propose an innovative joint extraction model with cross-attention mechanism and global pointers with context shield window. Specifically, our methodology begins by inputting text data into a pre-trained RoBERTa model to generate word vector representations. Subsequently, these embeddings are passed through a modified cross-attention layer along with entity type embeddings to address missing entity type information. Next, we employ the global pointer to transform the extraction problem into a quintuple extraction problem, which skillfully solves the issue of overlapping triples. It is worth mentioning that we design a context shield window on the global pointer, which facilitates the identification of correct entities within a limited range during the entity extraction process. Finally, the capability of our model against malicious samples is improved by adding adversarial training during the training process. Demonstrating superiority over mainstream models, our approach achieves impressive results on three publicly available datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极玲完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
彭于晏应助Mine采纳,获得10
2秒前
2秒前
2秒前
大海完成签到,获得积分10
2秒前
2秒前
冰魂应助雨过天晴采纳,获得10
2秒前
亚亚完成签到,获得积分10
3秒前
IOAU完成签到,获得积分20
3秒前
3秒前
3秒前
koutianle完成签到 ,获得积分10
4秒前
coco完成签到,获得积分10
4秒前
科目三应助zzz6286采纳,获得10
4秒前
4秒前
厉亮发布了新的文献求助10
4秒前
科研通AI5应助内向绿竹采纳,获得10
4秒前
5秒前
lizhiqian2024发布了新的文献求助10
5秒前
5秒前
5秒前
lemon完成签到,获得积分10
5秒前
大海发布了新的文献求助10
6秒前
上官若男应助小林不熬夜采纳,获得10
6秒前
蓝调爱科研应助SongNan_Ding采纳,获得10
6秒前
xioabu完成签到,获得积分10
6秒前
李健的小迷弟应助wfl采纳,获得10
6秒前
6秒前
苏尔发布了新的文献求助10
6秒前
无花果应助周胎胎采纳,获得10
6秒前
6秒前
小猪发布了新的文献求助10
6秒前
小烦发布了新的文献求助10
6秒前
Yr关闭了Yr文献求助
6秒前
7秒前
huracan完成签到,获得积分10
7秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808716
求助须知:如何正确求助?哪些是违规求助? 3353476
关于积分的说明 10365281
捐赠科研通 3069664
什么是DOI,文献DOI怎么找? 1685735
邀请新用户注册赠送积分活动 810675
科研通“疑难数据库(出版商)”最低求助积分说明 766286