癌症研究
生物
表观遗传学
DNA甲基化
遗传学
基因表达
基因
作者
Jingxuan Lian,Xiaohui Duan,Wenjie Chen,Xinhong Zhang,Ming‐De Lu,Zheshen Lin,Zhentian Wu,Litian Ma,Rong Liang
标识
DOI:10.1038/s41420-025-02768-3
摘要
Abstract Gastrointestinal (GI) cancers exhibit aberrant lipid metabolism, yet the causal mechanisms remain elusive. Here, we integrated Mendelian randomization (MR) and multi-omics data to dissect metabolic drivers of 20 GI diseases. Focusing on colorectal (CC) and esophageal cancer (EC), we identified five metabolites (e.g., 1,2-di-palmitoyl-sn-glycero-3-phosphocholine) and arachidonic acid ethyl ester as causal drivers. Summary-data-based MR and colocalization analysis (PP.H4 > 0.75) revealed FADS1 as a master regulator of these metabolites, with genetic variants exhibiting tissue-specific lipidomic effects. Functional validation using FADS1-knockout cell lines and mouse models demonstrated that FADS1 inhibition suppresses tumor cell proliferation, migration, and invasion while promoting apoptosis. In vivo, FADS1 deletion reduced chemically induced CC/EC tumor burden by 62–75%, accompanied by decreased Ki-67/MMP-9 expression and inflammatory infiltration. Mechanistically, FADS1 ablation disrupted lipid metabolism (reduced linoleic acid and arachidonic acid) and attenuated PI3K/AKT and MAPK signaling. Multi-omics integration further corroborated FADS1-mediated epigenetic regulation (e.g., mQTL-driven DNA methylation). This study establishes FADS1 as a pivotal orchestrator of GI carcinogenesis via metabolic reprogramming and signaling dysregulation, offering a compelling therapeutic target for precision oncology in CC and EC.
科研通智能强力驱动
Strongly Powered by AbleSci AI