Tailored SONAR-MSI: Converting SONAR-MS Data into Pseudoimages for Deep-Learning-Based Natural Products Analysis

声纳 化学 海洋哺乳动物与声纳 自然(考古学) 海洋学 地质学 古生物学
作者
Zhong Jin,Bingjie Zhu,Zhenhao Li,Zheng Li,Yu Tang,Yì Wáng
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.5c03682
摘要

LC-MS has become an essential tool for the analysis of complex samples. However, conventional MS data processing often involves cumbersome workflows and is prone to loss of information, particularly in the context of chemically diverse natural products (NPs). In this study, a novel workflow termed SONAR-MSI was established by integrating synchronized selected ion acquisition (SONAR) with pseudo-mass spectrometry imaging (MSI) and deep learning (DL) for NP quality analysis. Specifically, to enable direct application of convolutional neural networks (CNNs), a dedicated conversion protocol was established to transform SONAR-MS data into structured pseudoimages, while retaining comprehensive retention time, mass-to-charge ratio (m/z), and intensity information. Comparative evaluation revealed that SONAR significantly reduces spectral redundancy and enhances MS2 quality while minimizing data storage demands relative to conventional MSE acquisition. As a case study, five closely related Ganoderma species were accurately classified using a SONAR-MSI-based CNN model, which achieved 100% accuracy, surpassing the performance of feature-table-based models (91.4%). Furthermore, the pixel-wise structure of SONAR-MSI allows interpretable mapping of metabolites to image coordinates, supporting both visualization and annotation. These findings establish SONAR-MSI as a robust and scalable approach for DL-assisted metabolomics, enabling efficient and information-rich NP analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容寒凝完成签到,获得积分20
3秒前
Vicky完成签到 ,获得积分10
3秒前
在水一方应助醉熏的青筠采纳,获得10
3秒前
共享精神应助111采纳,获得10
4秒前
南山无梅落完成签到,获得积分10
5秒前
thinking完成签到,获得积分10
5秒前
5秒前
郑绒绒完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助zbh采纳,获得10
6秒前
细心的老头完成签到,获得积分10
6秒前
失眠亦寒发布了新的文献求助10
7秒前
7秒前
haoliu完成签到,获得积分10
7秒前
Stargazer完成签到,获得积分10
7秒前
7秒前
wyc完成签到,获得积分10
8秒前
9秒前
浮浮发布了新的文献求助10
10秒前
orixero应助jou采纳,获得10
11秒前
蟹坚强发布了新的文献求助10
11秒前
南笙发布了新的文献求助20
12秒前
852应助HugginBearOuO采纳,获得10
12秒前
12秒前
ywhys完成签到,获得积分10
14秒前
朴素的寒天完成签到,获得积分10
15秒前
16秒前
解语花发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
科研通AI2S应助舒适的孤云采纳,获得10
17秒前
18秒前
18秒前
莫停完成签到 ,获得积分10
19秒前
deway发布了新的文献求助10
19秒前
顺利的慕儿完成签到 ,获得积分10
19秒前
Ava应助Zeal采纳,获得10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5015916
求助须知:如何正确求助?哪些是违规求助? 4256185
关于积分的说明 13263932
捐赠科研通 4060118
什么是DOI,文献DOI怎么找? 2220594
邀请新用户注册赠送积分活动 1229912
关于科研通互助平台的介绍 1152541