已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable machine learning model for predicting functional outcomes in posterior circulation stroke after thrombectomy

医学 判别式 队列 冲程(发动机) 接收机工作特性 改良兰金量表 公制(单位) 随机森林 机器学习 人工智能 特征选择 物理疗法 内科学 缺血性中风 计算机科学 运营管理 缺血 经济 工程类 机械工程
作者
Zhelv Yao,Qiuhong Ji,Xuehao Zang,Wenwei Yun,Yun Luo,Jie Cao,Jingxian Xu,Zhihong Ke,Ziyi Xie,Chenglu Mao,Qiaochu Guan,Weiping Lv,Zhengyang Zhu,Yanan Huang,Ya Peng,Yun Xu
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-2025 被引量:1
标识
DOI:10.1136/jnis-2025-023624
摘要

Background The early prediction of functional outcomes in patients with posterior circulation stroke (PCS) is crucial for timely interventions and optimizing treatment plans. We have developed and validated a machine learning (ML) model for predicting 3-month functional outcomes in patients with PCS undergoing endovascular thrombectomy (EVT). Methods The derivation cohort, consisting of 202 patients with PCS who underwent EVT at four medical centers from January 2020 to December 2023, was separated for training and internal validation, and an external dataset of 54 patients admitted from January 2020 to July 2023 was used for external validation. The target outcome was a good functional outcome, defined as a modified Rankin Scale score of 0–3 at 3 months. Seven ML models were trained using preoperative features, with the primary evaluation metric being the area under the receiver operating characteristic curve (AUC). The top performing model was further trained using intraoperative and postoperative features. Model interpretations were generated using the Shapley additive explanations (SHAP) method. Results The Random Forest model demonstrated the best discriminative ability among the models considered. After feature selection, the final preoperative model used seven features, achieving an AUC of 0.83 in the test set and 0.81 in the external validation cohort. The inclusion of intraoperative and postoperative features further enhanced the model’s performance, resulting in an AUC of 0.84 and 0.90 in the test set and 0.83 and 0.90 in the external validation cohort, respectively. These models have been incorporated into a publicly accessible web-based calculator ( https://zhelvyao-123-60-basilarz.streamlit.app ). Conclusion The interpretable ML models provide dynamic accurate predictions of functional outcomes in patients with PCS after EVT, offering valuable insights for personalized risk stratification and optimizing perioperative management, with potential for integration into clinical workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LISHUANG发布了新的文献求助10
1秒前
1秒前
马畅完成签到 ,获得积分10
4秒前
5秒前
5秒前
成就的鲂发布了新的文献求助10
10秒前
啾啾发布了新的文献求助10
10秒前
12秒前
12秒前
英俊的铭应助背后夜柳采纳,获得10
13秒前
14秒前
MOMOTG发布了新的文献求助20
15秒前
Ronnie完成签到,获得积分10
17秒前
littlemonkey完成签到,获得积分10
18秒前
天天快乐应助啾啾采纳,获得10
18秒前
成就的鲂完成签到,获得积分10
19秒前
华仔应助茉莉采纳,获得30
21秒前
22秒前
充电宝应助成就的鲂采纳,获得10
22秒前
Momomo应助读书的时候采纳,获得10
23秒前
24秒前
完美世界应助wonder123采纳,获得10
24秒前
无极微光应助RobiN采纳,获得20
25秒前
热心市民张女士完成签到,获得积分10
25秒前
Jasper应助13211采纳,获得10
25秒前
26秒前
cva9514发布了新的文献求助30
29秒前
英姑应助江郁清采纳,获得10
29秒前
Evelyn_ding应助单薄纸飞机采纳,获得10
30秒前
32秒前
sue发布了新的文献求助10
32秒前
LISHUANG完成签到,获得积分20
33秒前
ruoshui发布了新的文献求助10
33秒前
13211完成签到,获得积分10
34秒前
34秒前
13211发布了新的文献求助10
36秒前
云无意发布了新的文献求助20
38秒前
农四师完成签到 ,获得积分10
38秒前
唐宋元发布了新的文献求助30
38秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5696281
求助须知:如何正确求助?哪些是违规求助? 5106359
关于积分的说明 15218542
捐赠科研通 4852252
什么是DOI,文献DOI怎么找? 2603045
邀请新用户注册赠送积分活动 1554658
关于科研通互助平台的介绍 1512743