亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MS2MP: A Deep Learning Framework for Metabolic Pathway Prediction from MS/MS-Based Untargeted Metabolomics

代谢组学 代谢途径 小桶 化学 计算生物学 代谢网络 代谢物 苯丙素 人工智能 计算机科学 生物化学 新陈代谢 生物合成 色谱法 生物 转录组 基因表达 基因
作者
Han Bao,Xiuqiong Zhang,Xinxin Wang,Jinhui Zhao,Xinjie Zhao,Chunxia Zhao,Xin Lu,Guowang Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (27): 14200-14209
标识
DOI:10.1021/acs.analchem.4c06875
摘要

MS/MS-based untargeted metabolomics generates complex data, but pathway enrichment analysis is constrained by the low annotation rates of metabolic features. Here, we propose MS2MP, a novel deep learning-based framework for KEGG pathway prediction directly from untargeted tandem mass spectrometry (MS2), eliminating the need for prior metabolite annotation. MS2MP utilizes a graph neural network architecture to learn the complex relationships between spectral features and metabolic pathways, representing MS2 spectra as fragmentation tree graphs. Trained on 33,221 experimental MS2 spectra, MS2MP achieves robust predictive performance with a balanced accuracy of 94.1% in cross-validation and 87.8%-91.2% on three independent test sets. Notably, MS2MP achieves an "exact match" for 97-98 out of 161 tested metabolite standards across diverse experimental conditions, underscoring its reliability and adaptability. Subsequently, a novel MS2-based pathway enrichment method was developed. The established methods were applied to identify significantly perturbed pathways in transgenic maize. The results uncovered disruptions in phenylpropanoid biosynthesis and related downstream pathways, including those involved in amino acid and secondary metabolite metabolism, which were overlooked by the conventional annotation-based enrichment analysis method. To the best of our knowledge, MS2MP is the first computational tool capable of directly predicting metabolic pathways from MS2 spectra. By linking MS2-based untargeted metabolomics data to metabolic pathways, MS2MP enables more efficient pathway enrichment analysis, thereby accelerating biological discoveries and enhancing our understanding of complex metabolic networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
6秒前
Jasper应助jeff采纳,获得10
11秒前
36秒前
jeff发布了新的文献求助10
40秒前
fu完成签到 ,获得积分10
1分钟前
1分钟前
研友_VZG7GZ应助左白易采纳,获得10
2分钟前
Natsu应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
Asofi发布了新的文献求助10
2分钟前
2分钟前
2分钟前
左白易发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
gentleman完成签到,获得积分10
2分钟前
tufei完成签到,获得积分10
2分钟前
sciN发布了新的文献求助10
2分钟前
2分钟前
orixero应助公卫小张采纳,获得10
2分钟前
江枫渔火完成签到 ,获得积分10
2分钟前
bji完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
赘婿应助研友_QLX7x8采纳,获得10
3分钟前
钱小豪应助三微之廿采纳,获得10
3分钟前
3分钟前
公卫小张完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Eternity完成签到,获得积分10
4分钟前
4分钟前
yzhilson完成签到 ,获得积分10
4分钟前
4分钟前
pinklay完成签到 ,获得积分10
4分钟前
StonesKing完成签到,获得积分20
4分钟前
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124380
求助须知:如何正确求助?哪些是违规求助? 3662291
关于积分的说明 11590322
捐赠科研通 3362584
什么是DOI,文献DOI怎么找? 1847662
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827849