Prediction of metastasis-free survival in patients with localized prostate adenocarcinoma using primary tumor and lymph node radiomics from pre-treatment PSMA-PET/CT scans

无线电技术 医学 淋巴结 淋巴结转移 腺癌 前列腺癌 前列腺癌 原发性肿瘤 放射科 肿瘤科 转移 内科学 癌症
作者
Apurva Singh,William Silva Mendes,Sang-Bo Oh,Ozan Cem Güler,Ayşenur Elmalı,Birhan Demirhan,Amit Sawant,Phuoc T. Tran,Cem Önal,Lei Ren
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:: 111119-111119
标识
DOI:10.1016/j.radonc.2025.111119
摘要

To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma (PCa) treated with androgen deprivation therapy (ADT) and external radiotherapy using clinical factors and radiomics extracted from primary tumor and node volumes in pre-treatment PSMA PET/CT scans. Our cohort includes 134 PCa patients (nodal involvement in 28 patients). Gross tumor volumes of primary tumor (GTVp) and nodes (GTVn) on CT and PET scans were segmented. A 5 mm expansion ring area outside primary tumor was defined. Z-score normalization was applied to radiomics features extracted from tumor and ring; dimension reduction was performed using Principal Components Analysis (PCA). For patients with only primary tumor, we took 3 principal components (PCs) from GTVp and one ring PC as representative radiomics components from CT and PET scans. For patients with nodes, we calculated weighted average (by volume) of radiomics from primary tumor and nodes, computed first 3 PCs and combined it with 1st PC from the ring. Radiomics PCs and clinical variables (age, Gleason score, initial prostate specific antigen value (i PSA), PSA_relapse) formed the predictors. Due to MFS data imbalance (metastasis-24, no metastasis-110), we performed 70:30 train-test split and applied imbalance correction to training data. Univariate Cox-regression was used to select top predictors (logistic regression p < 0.05). Multivariate Cox-regression was performed on imbalance-corrected training data and fit on testing data (using predictors selected from training). Model 2 was built using clinical variables and radiomic PCs from primary tumors (GTVp, ring). Model 3 was built using clinical variables only. Binary classification analysis for prediction of five-year MFS was also performed. Results of time-to-event analysis (MFS) were: Cox-regression c-scores: model1: train- 0.77 [0.72, 0.78]; test- 0.69 [0.64, 0.70]; model2: train- 0.72 [0.66, 0.73]; test- 0.63 [0.58, 0.64]; model3: train- 0.62 [0.57, 0.63]; test- 0.54 [0.51, 0.56]. The results of 5 year MFS classification analysis were [sensitivity, specificity, AUC]: model 1: train- [83.6 %, 91.3 %, 0.88]; test- [76.3 %, 82.5 %, 0.81]; model 2: train- [77.4 %, 85.1 %, 0.84]; test- [71.5 %, 78.2 %, 0.76]; model 3: train- [69.3 %, 78.2 %, 0.76]; test- [64.7 %, 72.6 %, 0.68]. The two cohorts of patients classified by model 1 showed statistically significant differences in their actual survival curves, demonstrating the efficacy of the classification. Integration of node with primary tumor-radiomics provides the best prognostic performance in MFS prediction. This is one of the first studies to explore the prognostic value of pre-treatment PSMA-PET, a relatively recent advancement in the care of prostate adenocarcinoma patients. Results demonstrated the potential of using imaging biomarkers from PSMA-PET/CT images for prognosis prediction before the treatment, which provides clinicians valuable information for customizing the treatment paradigm to improve the outcomes for primary prostate cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shan完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
3秒前
3秒前
尊敬的语薇完成签到 ,获得积分10
3秒前
眯眯眼的惜芹完成签到,获得积分10
6秒前
池鱼完成签到,获得积分10
6秒前
6秒前
6秒前
格兰德法泽尔完成签到,获得积分10
6秒前
7秒前
江添盛望发布了新的文献求助10
7秒前
段小麻发布了新的文献求助10
7秒前
阴暗的爬行完成签到,获得积分20
8秒前
8秒前
albertxin完成签到,获得积分10
8秒前
赶路人发布了新的文献求助10
8秒前
9秒前
aaaaaa发布了新的文献求助10
11秒前
albertxin发布了新的文献求助10
11秒前
12秒前
wjwqz发布了新的文献求助10
13秒前
17秒前
17秒前
香蕉觅云应助段小麻采纳,获得10
18秒前
18秒前
鸡蛋酱完成签到 ,获得积分10
18秒前
lili完成签到,获得积分10
19秒前
zx完成签到,获得积分10
21秒前
张瑞宁发布了新的文献求助10
22秒前
那时花开应助无欲无求采纳,获得10
22秒前
CYPCYP发布了新的文献求助10
23秒前
辰辰发布了新的文献求助10
23秒前
鳌小饭完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
云为晓完成签到,获得积分10
28秒前
犹豫梨愁完成签到,获得积分10
29秒前
想发一区sci完成签到,获得积分10
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144941
求助须知:如何正确求助?哪些是违规求助? 4342494
关于积分的说明 13523292
捐赠科研通 4183148
什么是DOI,文献DOI怎么找? 2293925
邀请新用户注册赠送积分活动 1294391
关于科研通互助平台的介绍 1237312