MP-SeizNet: A multi-path CNN Bi-LSTM Network for seizure-type classification using EEG

脑电图 卷积神经网络 计算机科学 人工智能 癫痫 深度学习 模式识别(心理学) 癫痫发作 人工神经网络 小波 机器学习 心理学 神经科学
作者
Hezam Albaqami,Ghulam Mubashar Hassan,Amitava Datta
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104780-104780 被引量:15
标识
DOI:10.1016/j.bspc.2023.104780
摘要

Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助踏歌采纳,获得10
刚刚
Hason发布了新的文献求助10
1秒前
1秒前
北过居庸发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
3秒前
赘婿应助bertrand采纳,获得10
3秒前
4秒前
将心比鑫完成签到,获得积分10
4秒前
4秒前
852应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得20
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
研友_nqvkOZ应助科研通管家采纳,获得10
5秒前
尝原完成签到,获得积分10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得30
5秒前
Hello应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI2S应助GG酱采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
bjsun应助科研通管家采纳,获得10
5秒前
蝴蝶变成毛毛虫完成签到,获得积分10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
mmmmmMM完成签到,获得积分10
7秒前
洋葱王子发布了新的文献求助10
7秒前
7秒前
先锋发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517644
求助须知:如何正确求助?哪些是违规求助? 4610367
关于积分的说明 14521910
捐赠科研通 4547520
什么是DOI,文献DOI怎么找? 2491664
邀请新用户注册赠送积分活动 1473258
关于科研通互助平台的介绍 1445131