计算机科学
睡眠(系统调用)
睡眠质量
人工智能
光学(聚焦)
质量(理念)
噪音(视频)
相似性(几何)
机器学习
睡眠阶段
模式识别(心理学)
语音识别
多导睡眠图
心理学
脑电图
认知
神经科学
哲学
物理
认识论
光学
图像(数学)
操作系统
作者
Seungwoo Jeong,Eunjin Jeon,Seungpyo Noh,Jinsool Lee,Hyung‐Jin Kim,Seonguk Kim,Heung‐Il Suk
标识
DOI:10.1109/bci57258.2023.10078644
摘要
Analysis of sleep stages is an important issue for understanding optimal sleep environments. However, most studies focus on classifying sleep stages, not on sleep quality. In this work, we develop a framework to evaluate sleep quality by analyzing sleep staging patterns and defining a sleep index for quantification. By exploiting HMMs trained by reference patterns, we compute similarity measures with the structurebased method that is robust to noise. To demonstrate the validity of the proposed method, we conduct experiments using two publicly available MASS and PSG-Audio datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI