A Two-Branch Neural Network for Short-Axis PET Image Quality Enhancement

计算机科学 人工智能 卷积神经网络 图像质量 冗余(工程) 残余物 特征提取 特征(语言学) 模式识别(心理学) 计算机视觉 算法 图像(数学) 语言学 操作系统 哲学
作者
Minghan Fu,Meiyun Wang,Yaping Wu,Na Zhang,Yongfeng Yang,Haining Wang,Yun Zhou,Yue Shang,Fang‐Xiang Wu,Hairong Zheng,Dong Liang,Zhanli Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2864-2875 被引量:11
标识
DOI:10.1109/jbhi.2023.3260180
摘要

The axial field of view (FOV) is a key factor that affects the quality of PET images. Due to hardware FOV restrictions, conventional short-axis PET scanners with FOVs of 20 to 35 cm can acquire only low-quality PET (LQ-PET) images in fast scanning times (2-3 minutes). To overcome hardware restrictions and improve PET image quality for better clinical diagnoses, several deep learning-based algorithms have been proposed. However, these approaches use simple convolution layers with residual learning and local attention, which insufficiently extract and fuse long-range contextual information. To this end, we propose a novel two-branch network architecture with swin transformer units and graph convolution operation, namely SW-GCN. The proposed SW-GCN provides additional spatial- and channel-wise flexibility to handle different types of input information flow. Specifically, considering the high computational cost of calculating self-attention weights in full-size PET images, in our designed spatial adaptive branch, we take the self-attention mechanism within each local partition window and introduce global information interactions between nonoverlapping windows by shifting operations to prevent the aforementioned problem. In addition, the convolutional network structure considers the information in each channel equally during the feature extraction process. In our designed channel adaptive branch, we use a Watts Strogatz topology structure to connect each feature map to only its most relevant features in each graph convolutional layer, substantially reducing information redundancy. Moreover, ensemble learning is adopted in our SW-GCN for mapping distinct features from the two well-designed branches to the enhanced PET images. We carried out extensive experiments on three single-bed position scans for 386 patients. The test results demonstrate that our proposed SW-GCN approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研怪人完成签到 ,获得积分10
2秒前
善善完成签到 ,获得积分10
3秒前
忧伤的八宝粥完成签到,获得积分0
4秒前
月儿完成签到 ,获得积分10
4秒前
韭菜盒子完成签到,获得积分20
5秒前
青衫完成签到 ,获得积分10
7秒前
kevin完成签到,获得积分10
9秒前
susu发布了新的文献求助20
11秒前
lqz07完成签到,获得积分10
13秒前
SciGPT应助蟹老板采纳,获得10
15秒前
爱科学完成签到 ,获得积分10
17秒前
笨笨凡松完成签到,获得积分10
18秒前
lydy1993完成签到,获得积分10
20秒前
时米米米完成签到,获得积分10
20秒前
每天都很忙完成签到 ,获得积分10
21秒前
orixero应助susu采纳,获得10
22秒前
Jeffrey完成签到,获得积分10
23秒前
等待的代容完成签到,获得积分10
24秒前
25秒前
灵巧胜完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
29秒前
Tin完成签到,获得积分10
29秒前
35秒前
张张张xxx完成签到,获得积分10
35秒前
科研通AI2S应助蟹老板采纳,获得10
36秒前
淡然一德完成签到,获得积分10
36秒前
独指蜗牛完成签到 ,获得积分10
38秒前
39秒前
39秒前
39秒前
TMOMOR应助科研通管家采纳,获得10
39秒前
彭于晏应助科研通管家采纳,获得10
39秒前
进退须臾完成签到,获得积分10
39秒前
wan发布了新的文献求助50
40秒前
影像大侠完成签到,获得积分10
41秒前
当时只道是寻常完成签到 ,获得积分10
42秒前
秋迎夏完成签到,获得积分0
42秒前
领导范儿应助花与爱采纳,获得10
43秒前
二七完成签到 ,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976745
求助须知:如何正确求助?哪些是违规求助? 3520831
关于积分的说明 11204951
捐赠科研通 3257684
什么是DOI,文献DOI怎么找? 1798834
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806663