Identifying the Influencing Factors of Depressive Symptoms among Nurses in China by Machine Learning: A Multicentre Cross-Sectional Study

逻辑回归 工作量 倦怠 抑郁症状 医学 横断面研究 单变量 机器学习 临床心理学 人工智能 心理学 多元统计 计算机科学 精神科 焦虑 病理 操作系统
作者
Li Shu,Kristin K. Sznajder,Lingfang Ning,Hong Gao,Xinyue Xie,Shuo Liu,Shao Chunyu,X Li,Xiaoshi Yang
出处
期刊:Journal of Nursing Management [Wiley]
卷期号:2023: 1-11
标识
DOI:10.1155/2023/5524561
摘要

Background. Nurses’ high workload can result in depressive symptoms. However, the research has underexplored the internal and external variables, such as organisational support, career identity, and burnout, which may predict depressive symptoms among Chinese nurses via machine learning (ML). Aim. To predict nurses’ depressive symptoms and identify the relevant factors by machine learning (ML) algorithms. Methods. A self-administered smartphone questionnaire was delivered to nurses to evaluate their depressive symptoms; 1,431 questionnaires and 28 internal and external features were collected. In the training set, the use of maximum relevance minimum redundancy ranked the features’ importance. Five ML algorithms were used to establish models to identify nurses’ depressive symptoms using different feature subsets, and the area under the curve (AUC) determined the optimal feature subset. Demographic characteristics were added to the optimal feature subset to establish the combined models. Each model’s performance was evaluated using the test set. Results. The prevalence rate of depressive symptoms among Chinese nurses was 31.86%. The optimal feature subset comprised of sleep disturbance, chronic fatigue, physical fatigue, exhaustion, and perceived organisation support. The five models based on the optimal feature subset had good prediction performance on the test set (AUC: 0.871–0.895 and accuracy: 0.798–0.815). After adding the significant demographic characteristics, the performance of the five combined models slightly improved; the AUC and accuracy increased to 0.904 and 0.826 on the test set, respectively. The logistic regression analysis results showed the best and most stable performance while the univariate analysis results showed that external and internal personal features (AUC: 0.739–0.841) were more effective than demographic characteristics (AUC: 0.572–0.588) for predicting nurses’ depressive symptoms. Conclusions. ML could effectively predict nurses’ depressive symptoms. Interventions to manage physical fatigue, sleep disorders, burnout, and organisational support may prevent depressive symptoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
codekyle完成签到,获得积分10
2秒前
HY完成签到,获得积分10
3秒前
蘑菇屋完成签到 ,获得积分10
7秒前
秀丽的犀牛完成签到 ,获得积分10
7秒前
健壮雨兰完成签到,获得积分10
11秒前
冷静完成签到,获得积分10
11秒前
dyk完成签到,获得积分10
12秒前
舒适的藏花完成签到 ,获得积分10
12秒前
Xu_W卜完成签到,获得积分10
12秒前
12秒前
负责的流沙完成签到 ,获得积分10
13秒前
Jeffrey完成签到,获得积分10
14秒前
16秒前
16秒前
现实的俊驰完成签到 ,获得积分10
18秒前
严念桃完成签到,获得积分10
18秒前
18秒前
雨齐发布了新的文献求助10
19秒前
21秒前
liangm7发布了新的文献求助30
22秒前
22秒前
lilylian完成签到,获得积分10
23秒前
科研通AI5应助科研通管家采纳,获得30
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
顺利完成签到,获得积分10
24秒前
完美梨愁完成签到 ,获得积分10
25秒前
bioglia完成签到,获得积分10
28秒前
ECHO完成签到,获得积分10
30秒前
hdc12138完成签到,获得积分10
33秒前
雨齐完成签到,获得积分10
33秒前
小先生应助T_MC郭采纳,获得20
34秒前
Vegeta完成签到 ,获得积分10
42秒前
木雨亦潇潇完成签到,获得积分10
45秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
47秒前
47秒前
科研通AI2S应助Wang采纳,获得10
47秒前
48秒前
小二郎应助T_MC郭采纳,获得10
48秒前
YK完成签到,获得积分10
49秒前
heija完成签到,获得积分10
49秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379715
关于积分的说明 10510193
捐赠科研通 3099320
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615