Rational design of CdS/BiOCl S-scheme heterojunction for effective boosting piezocatalytic H2 evolution and pollutants degradation performances

降级(电信) 罗丹明B 甲基橙 异质结 盐酸四环素 反应速率常数 催化作用 材料科学 化学工程 制氢 化学 光化学 光催化 计算机科学 动力学 光电子学 工程类 电信 四环素 有机化学 生物化学 物理 抗生素 量子力学
作者
Pingyu Hao,Yali Cao,Xueer Ning,Ruqi Chen,Jing Xie,Jindou Hu,Zhenjiang Lu,Aize Hao
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:639: 343-354 被引量:86
标识
DOI:10.1016/j.jcis.2023.02.075
摘要

Piezocatalysis as an emerging technology is broadly applied in hydrogen evolution and organic pollutants degradation aspects. However, the dissatisfactory piezocatalytic activity is a severe bottleneck for its practical applications. In this work, CdS/BiOCl S-scheme heterojunction piezocatalysts were constructed and explored the performances of piezocatalytic hydrogen (H2) evolution and organic pollutants degradation (methylene orange, rhodamine B and tetracycline hydrochloride) under strain by ultrasonic vibration. Interestingly, CdS/BiOCl presents a volcano-type relationship between catalytic activity and CdS contents, namely firstly increases and then decreases with the increase of CdS content. Optimal 20 % CdS/BiOCl endows superior piezocatalytic H2 generation rate of 1048.2 μmol g−1h−1 in methanol solution, which is 2.3 and 3.4 times higher than that of pure BiOCl and CdS, respectively. This value is also much higher than the recently reported Bi-based and most of other typical piezocatalysts. Meanwhile, 5 % CdS/BiOCl delivers the highest reaction kinetics rate constant and degradation rate toward various pollutants compared with other catalysts, which also exceeds that of the previously numerous results. Improved catalytic capacity of CdS/BiOCl is mainly ascribed to the construction of S-scheme heterojunction for enhancing the redox capacity as well as inducing more effective charge carriers separation and transfer. Moreover, S-scheme charge transfer mechanism is demonstrated via electron paramagnetic resonance and Quasi-In-situ X-ray photoelectron spectroscopy measurements. Eventually, a novel piezocatalytic mechanism of CdS/BiOCl S-scheme heterojunction has been proposed. This research develops a novel pathway for designing highly efficient piezocatalysts and provides a deeper understanding in construction of Bi-based S-scheme heterojunction catalysts for energy conservation and wastewater disposal applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小饭发布了新的文献求助10
2秒前
星辰大海应助LELE采纳,获得10
3秒前
eggplant完成签到,获得积分10
3秒前
Orange应助45343采纳,获得10
10秒前
11秒前
12秒前
小饭完成签到,获得积分10
13秒前
科研通AI2S应助糯米糍采纳,获得10
13秒前
12345应助糯米糍采纳,获得10
14秒前
彭于晏应助糯米糍采纳,获得10
14秒前
15秒前
足球发布了新的文献求助10
15秒前
inter发布了新的文献求助10
16秒前
17秒前
淡然的新烟完成签到 ,获得积分10
19秒前
小蘑菇应助可可采纳,获得10
21秒前
bkagyin应助lineeeee采纳,获得10
24秒前
chentong完成签到 ,获得积分10
25秒前
26秒前
26秒前
inter完成签到,获得积分10
27秒前
31秒前
32秒前
32秒前
喝水吗完成签到,获得积分10
37秒前
38秒前
violet完成签到,获得积分10
39秒前
jenningseastera应助Raymond采纳,获得10
45秒前
pgmm完成签到,获得积分10
46秒前
lineeeee完成签到,获得积分20
46秒前
47秒前
47秒前
情怀应助xzy998采纳,获得10
48秒前
22完成签到 ,获得积分10
48秒前
52秒前
鱼在哪儿发布了新的文献求助10
53秒前
SciGPT应助羽翊采纳,获得10
55秒前
可可发布了新的文献求助10
56秒前
cij123完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415