DA-Net: Density-Aware 3D Object Detection Network for Point Clouds

计算机科学 点云 人工智能 目标检测 计算机视觉 交叉口(航空) 对象(语法) 模式识别(心理学) 离群值 骨干网 领域(数学) 计算机网络 数学 纯数学 工程类 航空航天工程
作者
Shuhua Wang,Ke Lü,Jian Xue,Yang Zhao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:10
标识
DOI:10.1109/tmm.2023.3245359
摘要

3D object detection is an important but demanding task, which has become an active research topic in the field of multimedia. Much recent research has been devoted to exploiting end-to-end trainable object detection networks with point clouds. However, most state-of-the-art methods have bottlenecks in detecting occluded objects and small objects, because the sparseness of point clouds is exacerbated on these objects. In this paper, a Density-Aware 3D object detection network (DA-Net) is proposed to improve the perception performance for detecting occluded and small objects, which contains four components: a backbone module with an inverse density scoring module (IDM) and a point-wise attention module (PAM), a 3D intersection over union Estimation Module (3DEM), a Consistent Label Assignment (CLA) method and an Adaptive-Soft-NMS method. The proposed backbone module makes the network concentrate on low-density points of occluded objects, and suppresses outliers and background points. Then, the 3DEM is introduced to evaluate the localization quality of the prediction boxes. Furthermore, the proposed CLA method can more accurately select positive and negative samples for small objects. Finally, Adaptive-Soft-NMS is proposed in our method to reduce the number of false detections during inference and thereby improve detection performance substantially. Extensive experiments demonstrated that the proposed method achieves state-of-the-art performance on two large-scale datasets, SUN RGB-D (62.1% in terms of mAP@0.25) and ScanNetV2 (67.1% in terms of mAP@0.25), and in particular, the detection accuracy of small objects and occluded objects are extremely improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪仔发布了新的文献求助200
刚刚
1秒前
2秒前
科研通AI5应助可耐的嫣娆采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
搜集达人应助得意洋洋采纳,获得10
4秒前
5秒前
秀儿完成签到,获得积分10
6秒前
xzy998应助zj采纳,获得10
7秒前
7秒前
大模型应助旅客采纳,获得10
8秒前
欢城完成签到,获得积分10
9秒前
9秒前
10秒前
张龙完成签到,获得积分10
10秒前
静一完成签到 ,获得积分0
12秒前
科研通AI5应助舒适寒松采纳,获得10
13秒前
tianxiong完成签到,获得积分10
13秒前
充电宝应助稳重的若雁采纳,获得10
14秒前
搜集达人应助优秀爆米花采纳,获得10
15秒前
Lucas应助欢呼的怀蝶采纳,获得10
15秒前
今后应助优秀的映萱采纳,获得10
15秒前
eryelv完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
hongdoupai发布了新的文献求助10
21秒前
Jiangzhibing发布了新的文献求助10
22秒前
22秒前
梦锂铧发布了新的文献求助10
22秒前
Ruler完成签到,获得积分10
22秒前
kilig发布了新的文献求助20
22秒前
旅客发布了新的文献求助10
22秒前
CYJ发布了新的文献求助10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4227369
求助须知:如何正确求助?哪些是违规求助? 3760846
关于积分的说明 11821657
捐赠科研通 3421736
什么是DOI,文献DOI怎么找? 1877920
邀请新用户注册赠送积分活动 931095
科研通“疑难数据库(出版商)”最低求助积分说明 838980