A hybrid approach for metal element identification by using laser-induced breakdown spectroscopy data

激光诱导击穿光谱 废品 支持向量机 鉴定(生物学) 计算机科学 合金 要素(刑法) 人工智能 有限元法 模式识别(心理学) 机器学习 数据挖掘 材料科学 激光器 工程类 冶金 结构工程 光学 物理 生物 法学 植物 政治学
作者
Haofeng Zeng,Zhuoxian Zhang,Sicong Liu
标识
DOI:10.1117/12.2664527
摘要

Recycling scrap metal is an important way to protect the ecological environment. Design effective yet efficient techniques to automatically identify recyclable scrap metals is an important task within this topic. Due to the advantages of fast response and high accuracy, laser-induced breakdown spectroscopy (LIBS) recently played an important role in the mineral identification. However, the identification accuracy of peak-seeking is greatly affected by the data quality of the LIBS spectrum, whereas machine learning methods may be greatly affected by the number of training data. By considering the above open issues, this paper proposes a hybrid algorithm based on support vector machine (SVM) and element peak-seeking. By investing the identified difference of the major element (with the largest composition in the alloy) and the general element (with composition more than 1% in the alloy) between peak-seeking and SVM, three integration types (i.e., rejection, partial acceptance, complete acceptance) are defined. The final recognition result is generated according to different integration types and the corresponding integration methods. To verify the feasibility of the proposed approach, a simulated alloy LIBS database was established based on 31 metal elements and the simulated alloy LIBS data according to their compositions. Comparing with the result obtained by only using SVM, the proposed method greatly improved the recognition accuracy. The accuracy of identifying all general elements increased from 8% to 74.5%. Experimental results confirmed the effectiveness of the proposed method in identification of general metal elements in terms of higher detection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忱麓裔发布了新的文献求助10
刚刚
墨客发布了新的文献求助10
刚刚
善学以致用应助法鼎勘采纳,获得10
刚刚
SciGPT应助亦兮采纳,获得10
1秒前
1秒前
仁谷居士完成签到,获得积分10
2秒前
Cruffin发布了新的文献求助10
2秒前
3秒前
GealAntS完成签到,获得积分0
3秒前
4秒前
风中的语柳关注了科研通微信公众号
4秒前
Allen发布了新的文献求助10
4秒前
薄雪草完成签到,获得积分10
5秒前
sss发布了新的文献求助10
5秒前
6秒前
6秒前
十九完成签到,获得积分10
6秒前
7秒前
南枝完成签到,获得积分20
8秒前
zhiwei发布了新的文献求助10
8秒前
jing完成签到,获得积分10
8秒前
9秒前
10秒前
XM完成签到,获得积分10
11秒前
11秒前
ABEDO发布了新的文献求助10
13秒前
慢慢发布了新的文献求助10
13秒前
13秒前
14秒前
lz发布了新的文献求助100
14秒前
Wangle发布了新的文献求助30
14秒前
15秒前
15秒前
yangerbao发布了新的文献求助30
16秒前
Master完成签到 ,获得积分10
16秒前
18秒前
18秒前
19秒前
20秒前
zhiwei发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540553
求助须知:如何正确求助?哪些是违规求助? 4627182
关于积分的说明 14602572
捐赠科研通 4568187
什么是DOI,文献DOI怎么找? 2504418
邀请新用户注册赠送积分活动 1482011
关于科研通互助平台的介绍 1453645