焊接
粒子群优化
点焊
计算机科学
过程(计算)
支持向量机
均方误差
算法
人工智能
工程类
机械工程
数学
统计
操作系统
作者
Yicheng He,Kai Yang,Xiaoqing Wang,Haisong Huang,Jiadui Chen
摘要
In a small sample welding test space, and to achieve online prediction and self-optimisation of process parameters for the resistance welding joint quality of power lithium battery packs, this paper proposes a welding quality prediction model. The model combines a chaos game optimisation algorithm (CGO) with the multi-output least-squares support vector regression machine (MLSSVR), and a multi-objective process parameter optimisation method based on a particle swarm algorithm. First, the MLSSVR model was constructed, and a hyperparameter optimisation strategy based on CGO was designed. Next, the welding quality was predicted using the CGO–MLSSVR prediction model. Finally, the particle swarm algorithm (PSO) was used to obtain the optimal welding process parameters. The experimental results show that the CGO–MLSSVR prediction model can effectively predict the positive and negative electrode nugget diameters, and tensile shear loads, with root mean square errors of 0.024, 0.039, and 5.379, respectively, which is better than similar methods. The average relative error in weld quality for the optimal welding process parameters is within 4%, and the proposed method has a good application value in the resistance spot welding of power lithium battery packs.
科研通智能强力驱动
Strongly Powered by AbleSci AI