Prediction of Histologic Neoadjuvant Chemotherapy Response in Osteosarcoma Using Pretherapeutic MRI Radiomics

医学 无线电技术 骨肉瘤 化疗 新辅助治疗 特征选择 接收机工作特性 放射科 人工智能 外科 内科学 病理 癌症 计算机科学 乳腺癌
作者
Amine Bouhamama,Benjamin Leporq,Wassef Khaled,Angéline Nemeth,Mehdi Brahmi,Julie Dufau,Perrine Marec‐Bérard,Jean‐Luc Drapé,F. Gouin,A. Bertrand-Vasseur,Jean‐Yves Blay,Olivier Beuf,F. Pilleul
出处
期刊:Radiology 卷期号:4 (5) 被引量:6
标识
DOI:10.1148/rycan.210107
摘要

Histologic response to chemotherapy for osteosarcoma is one of the most important prognostic factors for survival, but assessment occurs after surgery. Although tumor imaging is used for surgical planning and follow-up, it lacks predictive value. Therefore, a radiomics model was developed to predict the response to neoadjuvant chemotherapy based on pretreatment T1-weighted contrast-enhanced MRI. A total of 176 patients (median age, 20 years [range, 5-71 years]; 107 male patients) with osteosarcoma treated with neoadjuvant chemotherapy and surgery between January 2007 and December 2018 in three different centers in France (Centre Léon Bérard in Lyon, Centre Hospitalier Universitaire de Nantes in Nantes, and Hôpital Cochin in Paris) were retrospectively analyzed. Various models were trained from different configurations of the data sets. Two different methods of feature selection were tested with and without ComBat harmonization (ReliefF and t test) to select the most relevant features, and two different classifiers were used to build the models (an artificial neural network and a support vector machine). Sixteen radiomics models were built using the different combinations of feature selection and classifier applied on the various data sets. The most predictive model had an area under the receiver operating characteristic curve of 0.95, a sensitivity of 91%, and a specificity 92% in the training set; respective values in the validation set were 0.97, 91%, and 92%. In conclusion, MRI-based radiomics may be useful to stratify patients receiving neoadjuvant chemotherapy for osteosarcomas. Keywords: MRI, Skeletal-Axial, Oncology, Radiomics, Osteosarcoma, Pediatrics Supplemental material is available for this article. © RSNA, 2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助yanlinwen采纳,获得30
4秒前
5秒前
6秒前
张鑫发布了新的文献求助30
7秒前
9秒前
淡定完成签到,获得积分10
11秒前
淡定发布了新的文献求助10
15秒前
日落星野发布了新的文献求助10
15秒前
750pAtrlck完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
tianliyan完成签到 ,获得积分10
17秒前
17秒前
小飞侠完成签到 ,获得积分10
18秒前
搜集达人应助双儿采纳,获得10
20秒前
haul完成签到 ,获得积分20
21秒前
喵喵发布了新的文献求助10
22秒前
26秒前
28秒前
日落星野完成签到,获得积分20
28秒前
28秒前
28秒前
30秒前
852应助吴子冰采纳,获得10
31秒前
谦让的樱发布了新的文献求助10
31秒前
xuxuwang1完成签到,获得积分10
31秒前
31秒前
三笠发布了新的文献求助10
32秒前
33秒前
35秒前
钦川完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助30
38秒前
38秒前
钦川发布了新的文献求助10
38秒前
慕青应助dudu不吃榴莲采纳,获得10
39秒前
乐乐应助吴子冰采纳,获得10
40秒前
哈哈发布了新的文献求助10
40秒前
天天快乐应助云边小卖部采纳,获得10
41秒前
桐桐应助谦让的樱采纳,获得10
42秒前
licheng完成签到 ,获得积分10
42秒前
43秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864818
求助须知:如何正确求助?哪些是违规求助? 3407281
关于积分的说明 10653531
捐赠科研通 3131330
什么是DOI,文献DOI怎么找? 1726953
邀请新用户注册赠送积分活动 832100
科研通“疑难数据库(出版商)”最低求助积分说明 780146