Scalable micro/nanostructured superhydrophobic surface modifications for enhanced energy efficiency and heat transfer performance in stainless steel and titanium

冷凝 材料科学 热交换器 表面能 传热 化学工程 冶金 纳米技术 复合材料 机械工程 热力学 工程类 物理
作者
Younghun Shin,Kwon-Yeong Lee,Jeong‐Won Lee,Woonbong Hwang
出处
期刊:Materials research express [IOP Publishing]
卷期号:10 (7): 075001-075001
标识
DOI:10.1088/2053-1591/ace23a
摘要

Abstract Condensation refers to the change of a substance from a gaseous phase to a liquid phase, an example of which is the condensation of water vapor in nature. Condensation is used in many industries, such as energy generation and seawater desalination. On a general surface, filmwise condensation is the main phenomenon in which gaseous water vapor is condensed in the form of a film. However, film condensation acts as a factor that reduces energy efficiency as the liquid film formed on the surface interferes with heat transfer. A phenomenon opposite to film condensation is dropwise condensation, which is immediately separated after condensation in the form of droplets, and thus a film is not formed, greatly improving heat transfer efficiency. Because of these advantages, many studies have been conducted, and most studies have induced dropwise condensation by modifying the surface to be superhydrophobic. However, in the case of a superhydrophobic surface, it takes a lot of time and money in the process, so there is a great difficulty in increasing the area. Among them, stainless steel and titanium, which are most materials for industrial heat exchangers, have high robustness, so there are few studies on improving the condensation performance after surface modification due to the difficulty of processing. For this reason, there is a large gap between the currently conducted studies and the actual industry. Our research team succeeded in modifying the surface of a stainless steel and titanium tube the size of an actual heat exchanger into superhydrophobicity with a simple process. We confirmed that the condensation performance was improved on the superhydrophobic surface through experiments under various conditions. By comparing the improvement in the heat transfer performance of stainless steel and titanium under several conditions, the main cause of the performance improvement was proved. This study is expected to play a major role in the eco-friendly future industry where energy efficiency is important by improving the heat transfer performance of stainless steel and titanium, which are mainly used throughout the industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快白亦完成签到 ,获得积分10
6秒前
cc完成签到,获得积分10
9秒前
CodeCraft应助LanXiaohong采纳,获得10
13秒前
999hans完成签到 ,获得积分0
15秒前
包谷冬完成签到 ,获得积分10
17秒前
可可发布了新的文献求助10
23秒前
Owen应助tx采纳,获得50
24秒前
安诺完成签到,获得积分10
25秒前
超帅傲白完成签到 ,获得积分10
31秒前
困困困完成签到 ,获得积分10
33秒前
33秒前
曾经寄文完成签到 ,获得积分10
34秒前
能干的大船完成签到 ,获得积分10
39秒前
蔷薇完成签到,获得积分10
48秒前
TAO LEE完成签到 ,获得积分10
59秒前
aaa0001984完成签到,获得积分10
59秒前
阿玖完成签到 ,获得积分10
1分钟前
1分钟前
fufuya完成签到 ,获得积分10
1分钟前
跪斗丶完成签到 ,获得积分10
1分钟前
科研通AI2S应助Singularity采纳,获得10
1分钟前
1分钟前
温暖完成签到 ,获得积分10
1分钟前
Tay发布了新的文献求助30
1分钟前
郭星星完成签到,获得积分10
1分钟前
1分钟前
踏实晓啸完成签到,获得积分10
1分钟前
流星雨发布了新的文献求助30
1分钟前
Jason完成签到 ,获得积分10
1分钟前
Tay完成签到 ,获得积分10
1分钟前
1分钟前
YC发布了新的文献求助10
1分钟前
阿昊又在摸鱼完成签到 ,获得积分10
1分钟前
今我来思完成签到 ,获得积分10
1分钟前
薄荷小新完成签到 ,获得积分10
1分钟前
诗蕊完成签到 ,获得积分0
1分钟前
摆哥完成签到,获得积分10
1分钟前
荔枝完成签到 ,获得积分10
1分钟前
Childwise完成签到,获得积分10
1分钟前
信封完成签到 ,获得积分10
1分钟前
高分求助中
Thermodynamic data for steelmaking 3000
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Cross-Cultural Psychology: Critical Thinking and Contemporary Applications (8th edition) 800
Counseling With Immigrants, Refugees, and Their Families From Social Justice Perspectives pages 800
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
Electrochemistry 500
Broflanilide prolongs the development of fall armyworm Spodoptera frugiperda by regulating biosynthesis of juvenile hormone 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2371861
求助须知:如何正确求助?哪些是违规求助? 2079810
关于积分的说明 5208429
捐赠科研通 1807201
什么是DOI,文献DOI怎么找? 902059
版权声明 558266
科研通“疑难数据库(出版商)”最低求助积分说明 481709