清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An improved lightweight small object detection framework applied to real-time autonomous driving

计算机科学 修剪 块(置换群论) 核(代数) 对象(语法) 卷积(计算机科学) 目标检测 排名(信息检索) 人工智能 深度学习 计算机视觉 模式识别(心理学) 人工神经网络 数学 生物 组合数学 农学 几何学
作者
Bharat Mahaur,K. K. Mishra,Anoj Kumar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121036-121036 被引量:20
标识
DOI:10.1016/j.eswa.2023.121036
摘要

Recent deep learning-based object detectors have shown compelling performance for the detection of large objects in autonomous driving applications. However, the detection of small objects like traffic signs and traffic lights is challenging owing to the complex nature of such objects. This article investigates how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. In particular, we explore and introduce architectural changes to the different components of the popular YOLOv5 model in order to improve its performance in the detection of small objects for autonomous driving. Initially, we propose group depthwise separable convolution as the improved convolution unit to replace standard convolution. We then integrate this unit to create the attention-based dilated CSP block. Lastly, this block is combined with several proposed modules, including the improved SPP, improved PANet, and improved information paths, to form our IS-YOLOv5 model. We also integrate kernel pruning on the network to accelerate the model deployment on vehicle-mounted mobile platform due to limited computing resources and real-time constraints. Specifically, we propose the versatile network pruning (VNP) technique based on Taylor criterion ranking to prune less-essential kernels in the network. We will show that our modifications barely increase the complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed IS-YOLOv5 model increases the mAP by 8.35% on the BDD100K dataset. Besides, our proposed model improves the detection speed in FPS by 3.10% compared to the YOLOv5 model. When using the VNP scheme, FPS is further increased by 52.14%, while the model size and complexity are reduced by 39.29% and 47.81%, with almost no change in mAP. Nevertheless, when compared to state-of-the-art models, IS-YOLOv5+VNP is found to be conducive to the deployment in autonomous driving systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助不灭采纳,获得10
3秒前
yorkin完成签到 ,获得积分10
5秒前
蓝天小小鹰完成签到 ,获得积分10
5秒前
heija完成签到,获得积分10
8秒前
wmszhd完成签到,获得积分10
8秒前
薄荷完成签到,获得积分10
18秒前
爱静静应助科研通管家采纳,获得10
21秒前
cdercder应助科研通管家采纳,获得10
21秒前
爱静静应助科研通管家采纳,获得30
21秒前
爱静静应助科研通管家采纳,获得30
21秒前
小小王完成签到 ,获得积分10
22秒前
26秒前
无花果应助归零者碳索者采纳,获得10
27秒前
秋夜临完成签到,获得积分10
31秒前
小白完成签到 ,获得积分10
34秒前
35秒前
Cold-Drink-Shop完成签到,获得积分10
35秒前
薄荷岛1完成签到,获得积分10
37秒前
Tia发布了新的文献求助30
39秒前
追梦完成签到,获得积分10
44秒前
white完成签到,获得积分10
51秒前
陶醉的翠霜完成签到 ,获得积分10
57秒前
gmc完成签到 ,获得积分10
57秒前
善学以致用应助ppf采纳,获得10
1分钟前
大白完成签到 ,获得积分10
1分钟前
1分钟前
songyongjian完成签到,获得积分10
1分钟前
1分钟前
songyongjian发布了新的文献求助10
1分钟前
Lrcx完成签到 ,获得积分10
1分钟前
D-L@rabbit完成签到 ,获得积分10
1分钟前
雪雪完成签到 ,获得积分10
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
ppf完成签到,获得积分20
1分钟前
一叶扁舟完成签到 ,获得积分10
1分钟前
gengsumin完成签到,获得积分10
1分钟前
lily完成签到 ,获得积分10
1分钟前
wangwei完成签到 ,获得积分10
1分钟前
李新光完成签到 ,获得积分10
1分钟前
溪与芮行完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336777
关于积分的说明 10282126
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468