A Deep Learning Neural Network to Classify Obesity Risk in Portuguese Adolescents Based on Physical Fitness Levels and Body Mass Index Percentiles: Insights for National Health Policies

体质指数 百分位 超重 肥胖 医学 接收机工作特性 老年学 观察研究 身体素质 人口学 物理疗法 儿童肥胖 内科学 统计 数学 社会学
作者
Pedro Forte,Samuel Encarnação,António M. Monteiro,José E. Teixeira,Soukaina Hattabi,Andrew Sortwell,Luís Branquinho,Bruna Amaro,Tatiana Sampaio,Pedro Flores,Sandra Silva-Santos,Joana Ribeiro,Amanda Batista,Ricardo Ferraz,Filipe Rodrigues
出处
期刊:Behavioral sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (7): 522-522 被引量:4
标识
DOI:10.3390/bs13070522
摘要

The increasing prevalence of overweight and obesity among adults is a risk factor for many chronic diseases and death. In addition, obesity among children and adolescents has reached unprecedented levels and studies show that obese children and adolescents are more likely to become obese adults. Therefore, both the prevention and treatment of obesity in adolescents are critical. This study aimed to develop an artificial intelligence (AI) neural network (NNET) model that identifies the risk of obesity in Portuguese adolescents based on their body mass index (BMI) percentiles and levels of physical fitness. Using datasets from the FITescola® project, 654 adolescents aged between 10-19 years old, male: 334 (51%), female: n = 320 (49%), age 13.8 ± 2 years old, were selected to participate in a cross-sectional observational study. Physical fitness variables, age, and sex were used to identify the risk of obesity. The NNET had good accuracy (75%) and performance validation through the Receiver Operating Characteristic using the Area Under the Curve (ROC AUC = 64%) in identifying the risk of obesity in Portuguese adolescents based on the BMI percentiles. Correlations of moderate effect size were perceived for aerobic fitness (AF), upper limbs strength (ULS), and sprint time (ST), showing that some physical fitness variables contributed to the obesity risk of the adolescents. Our NNET presented a good accuracy (75%) and was validated with the K-Folds Cross-Validation (K-Folds CV) with good accuracy (71%) and ROC AUC (66%). According to the NNET, there was an increased risk of obesity linked to low physical fitness in Portuguese teenagers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muzi完成签到,获得积分10
1秒前
yu完成签到,获得积分10
2秒前
MNF发布了新的文献求助10
5秒前
赘婿应助qizhia采纳,获得10
6秒前
zrs发布了新的文献求助10
6秒前
7秒前
不安的晓灵完成签到 ,获得积分10
7秒前
苗苗完成签到,获得积分10
7秒前
化石吟完成签到,获得积分10
9秒前
深情安青应助勤奋的世德采纳,获得10
10秒前
lant0ng完成签到 ,获得积分10
11秒前
xxx发布了新的文献求助10
12秒前
12秒前
111完成签到 ,获得积分10
13秒前
haha完成签到,获得积分10
13秒前
ding应助zrs采纳,获得10
14秒前
研友_ZzwoR8发布了新的文献求助200
14秒前
科研通AI2S应助Steven采纳,获得10
15秒前
Green完成签到,获得积分10
15秒前
河西薤谷完成签到,获得积分10
15秒前
17秒前
windflake发布了新的文献求助30
18秒前
话梅气泡美式完成签到,获得积分10
18秒前
liuhuo给i7的求助进行了留言
20秒前
20秒前
健康幸福的大美女完成签到,获得积分10
22秒前
自由诗筠发布了新的文献求助10
22秒前
22秒前
苏乂发布了新的文献求助10
23秒前
JxJ发布了新的文献求助10
23秒前
xzy998应助Army616采纳,获得10
25秒前
GreenT完成签到,获得积分10
25秒前
泡泡糖pt完成签到,获得积分10
25秒前
喝到几点发布了新的文献求助10
26秒前
Singularity应助haha采纳,获得10
27秒前
27秒前
NexusExplorer应助明明采纳,获得10
29秒前
王了了完成签到 ,获得积分10
29秒前
加减乘除发布了新的文献求助10
30秒前
喝到几点完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304