Using Machine Learning to Include Planners’ Preferences in Railway Crew Scheduling Optimization

船员 机组调度 规划师 运筹学 调度(生产过程) 计算机科学 数学优化 工程类 人工智能 运营管理 数学 航空学
作者
Theresa Gattermann-Itschert,Laura Maria Poreschack,Ulrich W. Thonemann
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (3): 796-812 被引量:12
标识
DOI:10.1287/trsc.2022.1196
摘要

In crew scheduling, optimization models can become complex when a large number of penalty terms is included in the objective function to take planners’ preferences into account. Planners’ preferences often include nonmonetary aspects for which both the mathematical formulation and the assignment of appropriate penalty costs can be difficult. We address this problem by using machine learning to learn and predict planners’ preferences. We train a random forest classifier on planner feedback regarding duties from their daily work in railway crew scheduling. Our data set contains over 16,000 duties that planners labeled as good or bad. The trained model predicts the probability that a duty is perceived as bad by the planners. We present a novel approach to replace the large construct of penalty terms in a crew scheduling optimization model by a single term that penalizes duties proportionally to the predicted probability of being assessed as unfavorable by a planner. By integrating this probability into the optimization model, we generate schedules that include more duties with preferred characteristics. We increase the mean planner acceptance probability by more than 12% while only facing a marginal increase in costs compared with the original approach that utilizes a set of multiple penalty terms. Our approach combines machine learning to detect complex patterns regarding favorable duty characteristics and optimization to create feasible and cost-efficient crew schedules. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1196 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
edtaa发布了新的文献求助30
刚刚
李文哲应助羞涩的妙菱采纳,获得10
1秒前
csr完成签到,获得积分10
1秒前
科研通AI5应助小娟娟采纳,获得10
5秒前
5秒前
6秒前
7秒前
edtaa完成签到,获得积分10
8秒前
852应助Alessnndre采纳,获得10
8秒前
Yuciyy完成签到,获得积分10
8秒前
你大米哥完成签到 ,获得积分10
9秒前
多摩川的烟花少年完成签到,获得积分10
13秒前
Wayne完成签到,获得积分10
14秒前
冷酷哈密瓜完成签到,获得积分10
14秒前
JEAN完成签到 ,获得积分10
15秒前
wanci应助Derik采纳,获得10
16秒前
栀雨味完成签到,获得积分10
17秒前
20秒前
semigreen完成签到 ,获得积分10
20秒前
22秒前
细腻的谷秋完成签到 ,获得积分10
22秒前
丘比特应助默蟹采纳,获得10
22秒前
栀雨味发布了新的文献求助10
25秒前
jenningseastera应助拾柒采纳,获得10
25秒前
Alessnndre发布了新的文献求助10
25秒前
liusui完成签到 ,获得积分10
25秒前
炎帝完成签到 ,获得积分10
26秒前
28秒前
丘比特应助gwp1223采纳,获得10
29秒前
Alessnndre完成签到,获得积分20
30秒前
迷人世开完成签到,获得积分0
30秒前
31秒前
梵高完成签到,获得积分10
31秒前
小狗博士完成签到,获得积分10
35秒前
黄卡卡完成签到,获得积分10
35秒前
四宝发布了新的文献求助10
36秒前
37秒前
39秒前
gwp1223发布了新的文献求助10
42秒前
斯文败类应助魔幻蓉采纳,获得10
43秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823506
求助须知:如何正确求助?哪些是违规求助? 3365885
关于积分的说明 10438005
捐赠科研通 3085064
什么是DOI,文献DOI怎么找? 1697128
邀请新用户注册赠送积分活动 816209
科研通“疑难数据库(出版商)”最低求助积分说明 769442