Machine Learning Guided the Discovery of Superionic Delafossite AgFeO2

长石 化学 氧化物 有机化学
作者
Zhaobin Zhang,Jianfu Li,Yang Lv,Yong Liu,Jianan Yuan,Jiani Lin,Xiaoli Wang
出处
期刊:Inorganic Chemistry [American Chemical Society]
卷期号:64 (21): 10603-10611 被引量:1
标识
DOI:10.1021/acs.inorgchem.5c01235
摘要

The fundamental principle of solid-state electrolytes (SSEs) is predicated on the presence of superionic conductors (SICs), which are distinguished by the diffusion of liquid ions within the solid crystal lattice. These characteristics demonstrate considerable potential for achieving safe, high energy density, and reversible electrochemical energy storage in batteries. In this work, we employ molecular dynamics simulations based on machine learning force fields (MLFF) to elucidate the diffusion behavior of Ag+ through the Fe-O solid lattice in delafossite AgFeO2 above 800 K. The analysis of atomic trajectories, mean square displacements (MSD), and radial distribution functions (RDF) indicates that Ag+ ions migrate primarily through the concerted mechanism within the structure. Madelung energy analysis revealed that the interaction between Fe and O is more intense than that between Ag and O. It is notable that the introduction of Ag vacancies resulted in a reduction of the superionic transition temperature from 800 to 600 K, thus demonstrating the impact of structural defects on ionic behavior. The present study opens up avenues for targeted materials in solid-state electrolytes and provides deeper insights into delafossite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
NEKO发布了新的文献求助10
2秒前
Orange应助哈比人linling采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
一米阳光发布了新的文献求助10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
只争朝夕应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Eridium应助科研通管家采纳,获得10
4秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
冯广发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
9秒前
科研通AI6应助爱笑的枫叶采纳,获得10
9秒前
搜集达人应助阳炎采纳,获得10
10秒前
rationality完成签到,获得积分10
10秒前
健忘灵珊完成签到,获得积分10
11秒前
guo发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532433
求助须知:如何正确求助?哪些是违规求助? 4621191
关于积分的说明 14577130
捐赠科研通 4561052
什么是DOI,文献DOI怎么找? 2499136
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450318