逆动力学
弹道
动力学(音乐)
模型预测控制
控制理论(社会学)
轨迹优化
反向
控制(管理)
计算机科学
数学
数学优化
最优控制
人工智能
运动学
心理学
物理
经典力学
几何学
教育学
天文
作者
Vince Kurtz,Alejandro Castro,Aykut Özgün Önol,Hai Lin
标识
DOI:10.1177/02783649251344635
摘要
Robots must make and break contact with the environment to perform useful tasks, but planning and control through contact remains a formidable challenge. In this work, we achieve real-time contact-implicit model predictive control with a surprisingly simple method: inverse dynamics trajectory optimization. While trajectory optimization with inverse dynamics is not new, we introduce a series of incremental innovations that collectively enable fast model predictive control on a variety of challenging manipulation and locomotion tasks. We implement these innovations in an open-source solver and present simulation examples to support the effectiveness of the proposed approach. Additionally, we demonstrate contact-implicit model predictive control on hardware at over 100 Hz for a 20-degree-of-freedom bi-manual manipulation task. Video and code are available at https://idto.github.io .
科研通智能强力驱动
Strongly Powered by AbleSci AI