Tuning the Electronic Structure of Niobium Oxyphosphate/Reduced Graphene Oxide Composites by Vanadium‐Doping for High‐Performance Na+ Storage Application

石墨烯 材料科学 兴奋剂 氧化物 氧化钒 氧化铌 复合材料 超导电性 纳米技术 光电子学 冶金 凝聚态物理 物理
作者
Zhuo Chen,Tao Tao,Chenglong Shi,Xiaoyan Shi,Lianyi Shao,Junling Xu,Zhipeng Sun
标识
DOI:10.1002/cnl2.70010
摘要

ABSTRACT Sodium‐ion batteries have become a significant research focus in academia. As a novel sodium anode material, layered NbOPO 4 , consisting of octahedral NbO 6 units sharing oxygen atoms with tetrahedral PO₄ units, exhibits stability due to strong phosphorus‐oxygen covalent bonds that prevent oxygen loss from the framework. However, its inherently low electrical conductivity and sluggish charge transfer kinetics limit its electrochemical performance. To address these challenges, we designed and synthesized vanadium‐doped niobium oxyphosphate coated with reduced graphene oxide (V‐NbOPO 4 @rGO) via a microwave hydrothermal method followed by calcination. Vanadium doping effectively modulated the electronic structure of NbOPO 4 and significantly enhanced its conductivity, as corroborated by density functional theory (DFT) calculations. Consequently, the V 0.15 ‐NbOPO 4 @rGO electrode demonstrated exceptional rate capability, achieving 418 mAh g −1 at a low current density of 0.1 A g −1 and maintaining a reversible capacity exceeding 100 mAh g −1 even at an ultrahigh current density of 50 A g −1 . Furthermore, the reversible sodium storage mechanism of V 0.15 ‐NbOPO 4 @rGO was validated through in‐situ XRD, TEM, and XPS analyses. This study provides an effective strategy for improving the electrochemical performance of NbOPO 4 based anodes and deepens understanding of the sodium storage mechanism in V‐doped NbOPO 4 , emphasizing its potential for practical application in sodium‐ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
激情的一斩完成签到,获得积分20
2秒前
风雨完成签到,获得积分10
3秒前
3秒前
乐观振家完成签到,获得积分10
4秒前
嘴嘴是大嘴007完成签到,获得积分10
5秒前
直击灵魂完成签到,获得积分10
5秒前
郭博发布了新的文献求助30
5秒前
6秒前
100发布了新的文献求助10
6秒前
Owen应助激情的一斩采纳,获得10
7秒前
可爱非笑发布了新的文献求助10
9秒前
llc完成签到 ,获得积分10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
李健应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得30
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
可爱非笑完成签到,获得积分20
17秒前
21秒前
深情安青应助alooof采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211237
捐赠科研通 3038044
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098