Exploring the Impact of PA and Sedentary Behavior on Gout Risk in Hyperuricemia: Insights From Machine Learning and SHAP Analysis

医学 痛风 高尿酸血症 队列 内科学 接收机工作特性 全国健康与营养检查调查 尿酸 物理疗法 队列研究 久坐的生活习惯 老年学 体力活动 环境卫生 人口
作者
Yan Jiao,Ziliang Cheng,Lan Zhang,S. P. Kan,Yibin Du
出处
期刊:International Journal of Rheumatic Diseases [Wiley]
卷期号:28 (4)
标识
DOI:10.1111/1756-185x.70238
摘要

ABSTRACT Background Individuals with hyperuricemia (HUA) are widely recognized as being at increased risk for gout. This study aimed to investigate how physical activity (PA) duration and sedentary duration impact gout risk in individuals with HUA and to develop predictive models to assess their risk of developing gout. Methods We retrospectively collected clinical characteristics of 8057 individuals with HUA from the National Health and Nutrition Examination Survey (NHANES) consortium for the period 2007–2018. By developing and comparing four classic machine learning algorithms, the best‐performing Random Forest (RF) model was selected and combined with the SHAP interpreting algorithm to analyze the dose–response relationship between PA duration, sedentary time, and gout risk. Additionally, the RF model was used to identify the most critical factors influencing gout risk and to develop a free online tool for predicting gout risk in HUA individuals. Results The RF model outperformed others, achieving a Receiver Operating Characteristic (ROC) of 0.957 in the training cohort and 0.799 in the testing cohort. In the test cohort, it demonstrated an accuracy of 0.778, a Kappa of 0.247, a sensitivity of 0.701, a specificity of 0.785, a positive predictive value of 0.224, a negative predictive value of 0.967, and an F1 score of 0.340. SHAP analysis revealed the following insights: (1) hypertension, serum uric acid, age, gender, and BMI were identified as the top five factors for gout risk; (2) factors such as higher serum uric acid levels, age, BMI, creatinine, sedentary duration, lower PA, hypertension, male sex, and diabetes were associated with an elevated risk of gout; and (3) a PA duration of 1–7 h per week was linked to a lower risk of gout, while sedentary time exceeding 6 h per day increased gout risk, regardless of age, sex, or comorbidities. Conclusion We encourage individuals with HUA to engage in 1–7 h of PA per week and limit daily sedentary time to less than 6 h to reduce gout risk. The developed prediction model is freely available as a web‐based app at: https://sasuki.shinyapps.io/GoutRisk/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的时光完成签到 ,获得积分10
刚刚
judy发布了新的文献求助10
刚刚
超级诗桃完成签到,获得积分10
1秒前
1秒前
shi完成签到,获得积分10
2秒前
光头强应助苗笑卉采纳,获得10
3秒前
SciGPT应助内向瑾瑜采纳,获得10
3秒前
笨笨的白梅完成签到,获得积分10
5秒前
super完成签到,获得积分10
5秒前
wlL发布了新的文献求助10
6秒前
7秒前
小白发布了新的文献求助10
11秒前
Ava应助健忘的金采纳,获得10
12秒前
ahsisalah完成签到,获得积分10
13秒前
13秒前
细心嚓茶发布了新的文献求助10
14秒前
科研通AI5应助syx采纳,获得10
14秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
xiaotudou95应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
iNk应助HP采纳,获得20
16秒前
17秒前
wlL完成签到,获得积分10
18秒前
qwt发布了新的文献求助10
19秒前
风中的语堂完成签到,获得积分10
19秒前
飞仔123完成签到 ,获得积分10
20秒前
CodeCraft应助可靠的中心采纳,获得10
21秒前
羽楠完成签到,获得积分10
21秒前
汤雯慧完成签到,获得积分10
21秒前
DDDOG完成签到,获得积分10
21秒前
打打应助yl采纳,获得10
22秒前
wwwww完成签到,获得积分10
22秒前
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784104
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240907
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671248
邀请新用户注册赠送积分活动 800203
科研通“疑难数据库(出版商)”最低求助积分说明 759241