Oncology Dose Optimization: Tailored Approaches to Different Molecular Classes

医学 临床试验 药品 药物开发 临床药理学 免疫疗法 药理学 肿瘤科 癌症 医学物理学 计算生物学 生物信息学 内科学 生物
作者
Jiawen Zhu,Amy Schroeder,Sabine Frank,Christophe Boetsch,Candice Jamois,Nastya Kassir,Koorosh Korfi,Elizabeth A. Punnoose,Anjali Vaze,Peter C. Trask,Pritti Gosai,Jane Fridlyand,Chunze Li
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
标识
DOI:10.1002/cpt.3658
摘要

Oncology dose optimization during the era of chemotherapy focused on identifying the maximum tolerated dose (MTD) for registrational trials, often resulting in significant toxicity. The advent of molecular targeted drugs and immunotherapies offers the potential to achieve similar efficacy with lower doses and fewer side effects, as maximal efficacy is often reached at doses below the MTD. Recent FDA guidance outlines expectations for improving dose optimization in oncology drug development. This review presents a framework for tailored dose optimization by categorizing oncology molecules into four distinct classes based on their mechanisms of action and clinical activities: small molecule targeted therapies and antibody‐drug conjugates (Class 1), large molecule antagonists (Class 2), cancer immunotherapy agonists (Class 3), and molecules with limited or no single‐agent activity (Class 4). Unique dose optimization considerations for each class are discussed, supported by illustrative case examples. To enhance robust dose decision‐making and optimize patient resource utilization, we propose using proof of activity as a gate for initiating dose expansion with one or multiple dose levels. This review emphasizes the importance of integrating all relevant preclinical data, disease knowledge, and clinical measurements and highlights the essential role of quantitative pharmacology and statistical modeling in optimizing doses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缄默发布了新的文献求助10
刚刚
冷艳的语薇完成签到,获得积分10
1秒前
狂野忆文发布了新的文献求助10
1秒前
睡到自然醒完成签到 ,获得积分10
1秒前
orixero应助犹豫的铅笔采纳,获得10
1秒前
勤奋尔丝完成签到 ,获得积分10
2秒前
万能图书馆应助英勇采纳,获得10
2秒前
药学院完成签到,获得积分10
2秒前
CoderPL发布了新的文献求助10
3秒前
拾夏完成签到,获得积分10
3秒前
Zzhao92发布了新的文献求助10
3秒前
上官若男应助神勇的白竹采纳,获得10
4秒前
ding应助嘀咕有无采纳,获得10
4秒前
4秒前
君克渡完成签到,获得积分10
4秒前
FashionBoy应助2丶5分自由Gee采纳,获得10
5秒前
赵欣月发布了新的文献求助30
5秒前
5秒前
酷波er应助xxxxx采纳,获得10
5秒前
5秒前
6秒前
6秒前
领导范儿应助何小珍采纳,获得10
6秒前
6秒前
ZhouYW发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
qise发布了新的文献求助10
8秒前
无花果应助刘英俊采纳,获得10
8秒前
SYY完成签到,获得积分10
9秒前
9秒前
wf发布了新的文献求助10
10秒前
CoderPL完成签到,获得积分10
10秒前
如初完成签到,获得积分10
11秒前
xiaozhang发布了新的文献求助10
12秒前
12秒前
脑洞疼应助su采纳,获得10
12秒前
ZZICU发布了新的文献求助20
12秒前
JamesPei应助when采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958814
求助须知:如何正确求助?哪些是违规求助? 3505069
关于积分的说明 11121961
捐赠科研通 3236515
什么是DOI,文献DOI怎么找? 1788844
邀请新用户注册赠送积分活动 871413
科研通“疑难数据库(出版商)”最低求助积分说明 802742