Gut microbiota-derived extracellular vesicles form a distinct entity from gut microbiota

肠道菌群 生物 细胞外小泡 胞外囊泡 微生物学 细菌 免疫学 遗传学 细胞生物学 基因 微泡 小RNA
作者
Anna Kaisanlahti,Jenni Turunen,Jenni Hekkala,Surbhi Mishra,Sonja Karikka,Sajeen Bahadur Amatya,Niko Paalanne,Johanna Krüger,Anne M. Portaankorva,Jussi Koivunen,Arja Jukkola,Pia Vihinen,Päivi Auvinen,Sirpa Leppä,Peeter Karihtala,Vesa Koivukangas,Janne Hukkanen,Seppo Vainio,Anatoly Samoylenko,Geneviève Bart
出处
期刊:MSystems [American Society for Microbiology]
标识
DOI:10.1128/msystems.00311-25
摘要

ABSTRACT Extracellular vesicles (EVs), nanoparticles secreted by both gram-negative and gram-positive bacteria, carry various biomolecules and cross biological barriers. Gut microbiota-derived EVs are currently being investigated as a communication mechanism between the microbiota and the host. Few clinical studies, however, have investigated gut microbiota-derived EVs. Here, we show that machine learning models were able to accurately distinguish gut microbiota and respective microbiota-derived EV samples according to their taxonomic composition both within each data set (area under the curve [AUC] 0.764–1.00) and in a cross-study setting (AUC 0.701–0.997). These results show that gut microbiota-derived EVs form a distinct taxonomic entity from gut microbiota. Thus, conventional gut microbiota composition may not correctly reflect communication between the gut microbiota and the host unless microbiota-derived EVs are reported separately. IMPORTANCE Gut microbiota-derived extracellular vesicles (EVs) have been suggested to be a communication mechanism between the gut microbiota and the human body. However, the data on EV secretion from the gut microbiota remain limited. To investigate and compare the composition of gut microbiota-derived EVs to gut microbiota composition, we used a machine learning approach to classify 16S rRNA gene sequencing data in seven clinical data sets incorporating both gut microbiota and gut microbiota-derived EV samples. The results of the study show that microbiota-derived EVs form a separate taxonomic entity from the gut microbiota. Gut microbiota-derived EVs should be included in clinical studies that investigate gut microbiota to gain more comprehensive insight into gut microbiota–host communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理夏波完成签到 ,获得积分10
刚刚
顾矜应助ww采纳,获得10
1秒前
难过刚完成签到 ,获得积分10
1秒前
李爱国应助左时樾采纳,获得10
2秒前
meizi完成签到,获得积分10
3秒前
小疯子发布了新的文献求助20
5秒前
5秒前
爆米花应助Stroeve采纳,获得10
6秒前
骆欣怡完成签到 ,获得积分10
6秒前
Robin95完成签到 ,获得积分10
7秒前
善良的梦槐完成签到,获得积分10
9秒前
程程发布了新的文献求助10
9秒前
believe完成签到,获得积分10
11秒前
靖哥哥完成签到,获得积分20
13秒前
蝴蝶变成毛毛虫完成签到,获得积分10
13秒前
烟花应助比巴卜采纳,获得10
14秒前
ak完成签到,获得积分10
15秒前
17秒前
今后应助jakelia采纳,获得10
24秒前
闪电侠完成签到 ,获得积分10
24秒前
han完成签到,获得积分20
26秒前
鸣笛应助正直的如凡采纳,获得10
27秒前
27秒前
28秒前
健哥完成签到,获得积分10
28秒前
左右发布了新的文献求助20
28秒前
等等完成签到,获得积分10
31秒前
32秒前
33秒前
33秒前
王超越发布了新的文献求助10
34秒前
35秒前
35秒前
等等发布了新的文献求助10
36秒前
38秒前
清脆凝竹发布了新的文献求助10
38秒前
39秒前
Stroeve发布了新的文献求助10
39秒前
jakelia发布了新的文献求助10
40秒前
ceeray23应助JinkFun采纳,获得10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945215
求助须知:如何正确求助?哪些是违规求助? 3490156
关于积分的说明 11055177
捐赠科研通 3221133
什么是DOI,文献DOI怎么找? 1780440
邀请新用户注册赠送积分活动 865397
科研通“疑难数据库(出版商)”最低求助积分说明 799854