Gut microbiota-derived extracellular vesicles form a distinct entity from gut microbiota

肠道菌群 生物 细胞外小泡 胞外囊泡 微生物学 细菌 免疫学 遗传学 细胞生物学 基因 微泡 小RNA
作者
Anna Kaisanlahti,Jenni Turunen,Jenni Hekkala,Surbhi Mishra,Sonja Karikka,Sajeen Bahadur Amatya,Niko Paalanne,Johanna Krüger,Anne M. Portaankorva,Jussi Koivunen,Arja Jukkola,Pia Vihinen,Päivi Auvinen,Sirpa Leppä,Peeter Karihtala,Vesa Koivukangas,Janne Hukkanen,Seppo Vainio,Anatoly Samoylenko,Geneviève Bart
出处
期刊:MSystems [American Society for Microbiology]
标识
DOI:10.1128/msystems.00311-25
摘要

ABSTRACT Extracellular vesicles (EVs), nanoparticles secreted by both gram-negative and gram-positive bacteria, carry various biomolecules and cross biological barriers. Gut microbiota-derived EVs are currently being investigated as a communication mechanism between the microbiota and the host. Few clinical studies, however, have investigated gut microbiota-derived EVs. Here, we show that machine learning models were able to accurately distinguish gut microbiota and respective microbiota-derived EV samples according to their taxonomic composition both within each data set (area under the curve [AUC] 0.764–1.00) and in a cross-study setting (AUC 0.701–0.997). These results show that gut microbiota-derived EVs form a distinct taxonomic entity from gut microbiota. Thus, conventional gut microbiota composition may not correctly reflect communication between the gut microbiota and the host unless microbiota-derived EVs are reported separately. IMPORTANCE Gut microbiota-derived extracellular vesicles (EVs) have been suggested to be a communication mechanism between the gut microbiota and the human body. However, the data on EV secretion from the gut microbiota remain limited. To investigate and compare the composition of gut microbiota-derived EVs to gut microbiota composition, we used a machine learning approach to classify 16S rRNA gene sequencing data in seven clinical data sets incorporating both gut microbiota and gut microbiota-derived EV samples. The results of the study show that microbiota-derived EVs form a separate taxonomic entity from the gut microbiota. Gut microbiota-derived EVs should be included in clinical studies that investigate gut microbiota to gain more comprehensive insight into gut microbiota–host communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
田様应助lzh采纳,获得10
4秒前
4秒前
5秒前
科研通AI5应助钟D摆采纳,获得10
6秒前
科研小狗发布了新的文献求助10
6秒前
哈基米德应助科研通管家采纳,获得20
6秒前
7秒前
yyy关闭了yyy文献求助
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
laber应助科研通管家采纳,获得50
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得150
7秒前
Hello应助科研通管家采纳,获得10
7秒前
蜀安应助科研通管家采纳,获得200
7秒前
17764715645应助科研通管家采纳,获得20
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得150
8秒前
华仔应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
哈基米德应助科研通管家采纳,获得20
8秒前
uni发布了新的文献求助10
9秒前
9秒前
耍酷乌完成签到,获得积分10
9秒前
aha关注了科研通微信公众号
10秒前
666发布了新的文献求助10
10秒前
11秒前
12秒前
una完成签到 ,获得积分10
13秒前
13秒前
14秒前
拓跋子轩完成签到,获得积分10
15秒前
pluto完成签到 ,获得积分10
16秒前
17秒前
17秒前
传奇3应助liyu采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5191054
求助须知:如何正确求助?哪些是违规求助? 4374552
关于积分的说明 13621498
捐赠科研通 4228481
什么是DOI,文献DOI怎么找? 2319295
邀请新用户注册赠送积分活动 1317858
关于科研通互助平台的介绍 1267898