Use of Retrieval-Augmented Large Language Model for COVID-19 Fact-Checking: Development and Usability Study

预印本 2019年冠状病毒病(COVID-19) 计算机科学 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 情报检索 万维网 医学 病毒学 爆发 病理 传染病(医学专业) 疾病
作者
Hai Li,Jingyi Huang,Mengmeng Ji,Yuyi Yang,Ruopeng An
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e66098-e66098 被引量:6
标识
DOI:10.2196/66098
摘要

Background The COVID-19 pandemic has been accompanied by an “infodemic,” where the rapid spread of misinformation has exacerbated public health challenges. Traditional fact-checking methods, though effective, are time-consuming and resource-intensive, limiting their ability to combat misinformation at scale. Large language models (LLMs) such as GPT-4 offer a more scalable solution, but their susceptibility to generating hallucinations—plausible yet incorrect information—compromises their reliability. Objective This study aims to enhance the accuracy and reliability of COVID-19 fact-checking by integrating a retrieval-augmented generation (RAG) system with LLMs, specifically addressing the limitations of hallucination and context inaccuracy inherent in stand-alone LLMs. Methods We constructed a context dataset comprising approximately 130,000 peer-reviewed papers related to COVID-19 from PubMed and Scopus. This dataset was integrated with GPT-4 to develop multiple RAG-enhanced models: the naïve RAG, Lord of the Retrievers (LOTR)–RAG, corrective RAG (CRAG), and self-RAG (SRAG). The RAG systems were designed to retrieve relevant external information, which was then embedded and indexed in a vector store for similarity searches. One real-world dataset and one synthesized dataset, each containing 500 claims, were used to evaluate the performance of these models. Each model’s accuracy, F1-score, precision, and sensitivity were compared to assess their effectiveness in reducing hallucination and improving fact-checking accuracy. Results The baseline GPT-4 model achieved an accuracy of 0.856 on the real-world dataset. The naïve RAG model improved this to 0.946, while the LOTR-RAG model further increased accuracy to 0.951. The CRAG and SRAG models outperformed all others, achieving accuracies of 0.972 and 0.973, respectively. The baseline GPT-4 model reached an accuracy of 0.960 on the synthesized dataset. The naïve RAG model increased this to 0.972, and the LOTR-RAG, CRAG, and SRAG models achieved an accuracy of 0.978. These findings demonstrate that the RAG-enhanced models consistently maintained high accuracy levels, closely mirroring ground-truth labels and significantly reducing hallucinations. The CRAG and SRAG models also provided more detailed and contextually accurate explanations, further establishing the superiority of agentic RAG frameworks in delivering reliable and precise fact-checking outputs across diverse datasets. Conclusions The integration of RAG systems with LLMs substantially improves the accuracy and contextual relevance of automated fact-checking. By reducing hallucinations and enhancing transparency by citing retrieved sources, this method holds significant promise for rapid, reliable information verification to combat misinformation during public health crises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助涛ss采纳,获得10
刚刚
爆米花应助wang采纳,获得10
1秒前
小巧孤晴发布了新的文献求助10
2秒前
内向灵凡发布了新的文献求助10
2秒前
黄静发布了新的文献求助20
2秒前
。。。发布了新的文献求助10
3秒前
3秒前
科研通AI6应助甜甜的草梅采纳,获得10
3秒前
4秒前
YamKinWah发布了新的文献求助10
4秒前
花无双完成签到,获得积分0
4秒前
刘子发布了新的文献求助10
4秒前
4秒前
5秒前
慕青应助陶军辉采纳,获得10
5秒前
6秒前
8秒前
8秒前
8秒前
脑洞疼应助。。。采纳,获得10
8秒前
汉堡发布了新的文献求助10
8秒前
9秒前
小刘小刘发布了新的文献求助20
9秒前
明亮的傲蕾完成签到 ,获得积分10
9秒前
星辰大海应助明芬采纳,获得10
10秒前
柠檬发布了新的文献求助10
10秒前
yyy发布了新的文献求助10
11秒前
yvonne发布了新的文献求助10
11秒前
ingyu发布了新的文献求助10
11秒前
NexusExplorer应助刘子采纳,获得10
11秒前
万能图书馆应助王晓采纳,获得10
12秒前
rayc应助傲娇的笑卉采纳,获得80
12秒前
12秒前
hbhbj发布了新的文献求助10
13秒前
wang完成签到,获得积分10
13秒前
赘婿应助Alvin采纳,获得10
13秒前
gis_xu发布了新的文献求助10
14秒前
14秒前
14秒前
xtt发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406899
求助须知:如何正确求助?哪些是违规求助? 4524554
关于积分的说明 14099190
捐赠科研通 4438431
什么是DOI,文献DOI怎么找? 2436250
邀请新用户注册赠送积分活动 1428249
关于科研通互助平台的介绍 1406340