AD4CD: Causal-Guided Anomaly Detection for Enhancing Cognitive Diagnosis

异常检测 异常(物理) 认知 心理学 计算机科学 人工智能 神经科学 物理 凝聚态物理
作者
Haiping Ma,Yue Yao,Changqian Wang,Siyu Song,Yong Yang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (12): 12337-12345 被引量:1
标识
DOI:10.1609/aaai.v39i12.33344
摘要

Cognitive diagnosis is a key task in computer-aided education, aimed at assessing a students' proficiency in specific knowledge concepts based on their responses to exercises. However, existing cognitive diagnosis models often overlook anomalies in students and exercises. For instance, some students might incorrectly response exercises despite having a strong grasp of the knowledge concept, or they might response correctly despite a lack of understanding. Such subtle anomalies can adversely affect the diagnostic results of the models. To address these anomalies, we conduct a qualitative analysis of how anomalous student states and exercise properties impact response outcomes using causal diagrams. We propose a framework named Anomaly Detection for Cognitive Diagnosis (AD4CD) to enhance the ability of Learning-to-Detect-Anomalous. AD4CD approaches the problem from a causal perspective, analyzing confounding paths that affect the true causal relationship between student ability and response outcomes, and designing an anomaly detection mechanism suitable for cognitive diagnostic models. Specifically, we first account for anomalous student behaviors and exercise properties and introduce response times from both students and exercises as modeling factors. By quantifying the response time distributions in high-dimensional features, we identify anomalies within skewed distributions, including both left-tail and right-tail anomalies. Using the detected anomaly scores, we comprehensively model the students' anomalous behaviors and exercise anomalies. Additionally, we reconstruct unbiased true abilities under natural conditions and use reconstruction loss as an anomaly score to assist in modeling guessing and slipping features. Lastly, AD4CD leverages a general cognitive diagnosis model as its backbone, optimizing the guessing and slipping features to provide unbiased and accurate feedback. Extensive experimental results demonstrate that AD4CD effectively captures anomalous data in the diagnostic process across three real-world datasets, enhancing the accuracy of the diagnostic results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐观小土豆完成签到,获得积分20
刚刚
1秒前
2秒前
行走人生发布了新的文献求助10
2秒前
万能图书馆应助如如采纳,获得10
2秒前
吴雨涛完成签到,获得积分10
2秒前
潘忠旭完成签到,获得积分10
2秒前
2秒前
可爱小张发布了新的文献求助10
3秒前
orangevv发布了新的文献求助10
3秒前
擦撒擦擦完成签到,获得积分10
4秒前
无花果应助allenise采纳,获得10
4秒前
科研通AI2S应助啦啦采纳,获得10
4秒前
5秒前
秀秀发布了新的文献求助10
5秒前
希望天下0贩的0应助曾峥采纳,获得10
5秒前
光华发布了新的文献求助10
6秒前
王一帆发布了新的文献求助10
6秒前
6秒前
中西西完成签到 ,获得积分10
7秒前
zsd完成签到,获得积分10
7秒前
8秒前
善学以致用应助爱学习采纳,获得10
8秒前
9秒前
镓氧锌钇铀应助vippp采纳,获得10
9秒前
李健的小迷弟应助WZQ采纳,获得10
10秒前
sleepingfish应助ChenYX采纳,获得20
10秒前
sleepingfish应助ChenYX采纳,获得30
10秒前
11秒前
11秒前
11秒前
zhangh65完成签到,获得积分10
12秒前
行走人生完成签到,获得积分10
12秒前
温柔以冬发布了新的文献求助10
13秒前
张质晗发布了新的文献求助10
13秒前
DouBo发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299586
求助须知:如何正确求助?哪些是违规求助? 4447698
关于积分的说明 13843511
捐赠科研通 4333326
什么是DOI,文献DOI怎么找? 2378747
邀请新用户注册赠送积分活动 1374030
关于科研通互助平台的介绍 1339544