联锁
材料科学
脚手架
执行机构
纤维素
接口(物质)
纳米技术
软机器人
自愈水凝胶
复合材料
生物医学工程
机械工程
化学工程
计算机科学
高分子化学
工程类
人工智能
毛细管作用
毛细管数
作者
Yuying Song,Zhouyang Hu,Sanwei Hao,Changyou Shao,Yangyang Xia,Chao Wang,Jing Zhang,Wenting Yu,Peng Fu,Hailin Cong,Jun Yang
标识
DOI:10.1002/adfm.202509712
摘要
Abstract Stimuli‐responsive hydrogels hold significant promise for human‐machine communication and soft actuators. However, conventional hydrogels, lack inherent rigidity and render them incapable of withstanding the external stress concentration, leading to severe structural destruction. To address this limitation, a structurally integrated hydrogel (SIG) based on a coordination bonding‐assisted heterostructure design is developed, combining a soft PEDOT:PSS/polyacrylic acid hydrogel layer and a rigid TEMPO‐oxidized bacterial cellulose layer for controllable soft actuators. Notably, molecular dynamics simulation reveals that the abundant interface interlocking on cellulose scaffold effectively mitigates crack propagation and optimizes structural integrity. The resulting SIG thus exhibits exceptional mechanical performance, including desirable puncture resistance (4.42 N), superior tearing tolerance (289.24 kJ m −2 ), and remarkable deformation stability (40 000 cycles). Meanwhile, the heterostructure design contributes to the programmable and reversible auto‐deformation (≈120 s) and shape memory (flower and gripper). Furthermore, the integration of hydrogel with screen‐printed Ag interdigital electrodes enables the development of a smart gripper device capable of providing continuous haptic feedback, enhancing its functionality in interactive applications. It is envisioned that this work would open up new avenues for the development of the impact and vibration resistance material and offers a novel perspective on versatile soft machines.
科研通智能强力驱动
Strongly Powered by AbleSci AI