亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Lesion Bioactivity in Hepatic Cystic Echinococcosis Using a Transformer-Based Fusion Model

囊性包虫病 包虫病 病变 医学 病理 放射科
作者
Zhu Wang,Fuyuan Li,Junjie Cai,Zengfu Xue,K. Dua,Tao Yan,Hanxi Zhang,Ying Zhou,Haining Fan,Zhan Wang
出处
期刊:Journal of Infection [Elsevier BV]
卷期号:: 106455-106455 被引量:1
标识
DOI:10.1016/j.jinf.2025.106455
摘要

Differentiating whether hepatic cystic echinococcosis (HCE) lesions exhibit biological activity is essential for developing effective treatment plans. This study evaluates the performance of a Transformer-based fusion model in predicting HCE lesion activity. This study analyzed CT images and clinical variables from 700 HCE patients across three hospitals from 2018 to 2023. Univariate and multivariate logistic regression analyses were conducted for the selection of clinical variables to construct a clinical model. Radiomic features were extracted from CT images using Pyradiomics to develop a radiomics model. Additionally, a 2D deep learning model and a 3D deep learning model were trained using the CT images. The fusion model was constructed using feature-level fusion, decision-level fusion, and a Transformer network architecture, allowing for the analysis of the discriminative ability and correlation among radiomic features, 2D deep learning features, and 3D deep learning features, while comparing the classification performance of the three multimodal fusion models. In comparison to radiomic and 2D deep learning features, the 3D deep learning features exhibited superior discriminative ability in identifying the biological activity of HCE lesions. The Transformer-based fusion model demonstrated the highest performance in both the test set and the external validation set, achieving AUC values of 0.997 (0.992-1.000) and 0.944 (0.911-0.977), respectively, thereby outperforming both the feature-level and decision-level fusion models, and enabling precise differentiation of HCE lesion biological activity. The Transformer multimodal fusion model integrates clinical features, radiomic features, and both 2D and 3D deep learning features, facilitating accurate differentiation of the biological activity of HCE lesions and exhibiting significant potential for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Estella完成签到 ,获得积分10
10秒前
16秒前
风趣雪一发布了新的文献求助10
20秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
MMMMM应助科研通管家采纳,获得10
38秒前
53秒前
53秒前
充电宝应助左白易采纳,获得10
58秒前
行走完成签到,获得积分10
1分钟前
科研通AI2S应助风趣雪一采纳,获得10
2分钟前
77777发布了新的文献求助10
2分钟前
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
yux完成签到,获得积分10
2分钟前
77777完成签到,获得积分10
2分钟前
毛不二发布了新的文献求助10
3分钟前
Hello应助嘿嘿采纳,获得10
3分钟前
3分钟前
3分钟前
Nan发布了新的文献求助10
3分钟前
王唯一发布了新的文献求助10
4分钟前
科研通AI5应助Nan采纳,获得10
4分钟前
我的小k8完成签到,获得积分10
4分钟前
心随以动完成签到 ,获得积分10
4分钟前
王唯一完成签到,获得积分20
4分钟前
修辛完成签到 ,获得积分10
4分钟前
4分钟前
ding应助王唯一采纳,获得10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
luanne发布了新的文献求助20
4分钟前
赘婿应助sealking采纳,获得10
5分钟前
5分钟前
sfwrbh发布了新的文献求助10
5分钟前
5分钟前
sealking发布了新的文献求助10
6分钟前
李健的小迷弟应助毛不二采纳,获得30
6分钟前
sealking完成签到,获得积分10
6分钟前
6分钟前
6分钟前
毛不二发布了新的文献求助30
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4197268
求助须知:如何正确求助?哪些是违规求助? 3732842
关于积分的说明 11754812
捐赠科研通 3406802
什么是DOI,文献DOI怎么找? 1869301
邀请新用户注册赠送积分活动 925275
科研通“疑难数据库(出版商)”最低求助积分说明 835808