Identification of Lesion Bioactivity in Hepatic Cystic Echinococcosis Using a Transformer-Based Fusion Model

囊性包虫病 包虫病 病变 医学 病理 放射科
作者
Zhu Wang,Fuyuan Li,Junjie Cai,Zengfu Xue,K. Dua,Tao Yan,Hanxi Zhang,Ying Zhou,Haining Fan,Zhan Wang
出处
期刊:Journal of Infection [Elsevier BV]
卷期号:: 106455-106455 被引量:1
标识
DOI:10.1016/j.jinf.2025.106455
摘要

Differentiating whether hepatic cystic echinococcosis (HCE) lesions exhibit biological activity is essential for developing effective treatment plans. This study evaluates the performance of a Transformer-based fusion model in predicting HCE lesion activity. This study analyzed CT images and clinical variables from 700 HCE patients across three hospitals from 2018 to 2023. Univariate and multivariate logistic regression analyses were conducted for the selection of clinical variables to construct a clinical model. Radiomic features were extracted from CT images using Pyradiomics to develop a radiomics model. Additionally, a 2D deep learning model and a 3D deep learning model were trained using the CT images. The fusion model was constructed using feature-level fusion, decision-level fusion, and a Transformer network architecture, allowing for the analysis of the discriminative ability and correlation among radiomic features, 2D deep learning features, and 3D deep learning features, while comparing the classification performance of the three multimodal fusion models. In comparison to radiomic and 2D deep learning features, the 3D deep learning features exhibited superior discriminative ability in identifying the biological activity of HCE lesions. The Transformer-based fusion model demonstrated the highest performance in both the test set and the external validation set, achieving AUC values of 0.997 (0.992-1.000) and 0.944 (0.911-0.977), respectively, thereby outperforming both the feature-level and decision-level fusion models, and enabling precise differentiation of HCE lesion biological activity. The Transformer multimodal fusion model integrates clinical features, radiomic features, and both 2D and 3D deep learning features, facilitating accurate differentiation of the biological activity of HCE lesions and exhibiting significant potential for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助qazplm采纳,获得10
4秒前
打野完成签到,获得积分10
4秒前
橘落发布了新的文献求助10
5秒前
媛57发布了新的文献求助10
5秒前
瀚。发布了新的文献求助10
7秒前
7秒前
SciGPT应助parpate采纳,获得10
8秒前
9秒前
11秒前
Planetary发布了新的文献求助10
12秒前
隐形曼青应助谨慎的向南采纳,获得10
13秒前
小杜发布了新的文献求助10
14秒前
14秒前
8R60d8应助不懈奋进采纳,获得10
16秒前
任性的卿完成签到,获得积分10
18秒前
parpate发布了新的文献求助10
18秒前
18秒前
小杜完成签到,获得积分10
20秒前
nic完成签到 ,获得积分10
20秒前
21秒前
24秒前
lo应助知来者采纳,获得10
25秒前
29秒前
29秒前
橘落完成签到 ,获得积分10
31秒前
Sean完成签到,获得积分10
32秒前
媛57发布了新的文献求助10
32秒前
33秒前
34秒前
35秒前
坚果发布了新的文献求助10
36秒前
汉堡包应助ZHC采纳,获得10
36秒前
37秒前
37秒前
40秒前
41秒前
栗悟饭与龟波功完成签到,获得积分10
44秒前
瀚。完成签到,获得积分10
45秒前
充电宝应助明理的慕青采纳,获得10
46秒前
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945137
求助须知:如何正确求助?哪些是违规求助? 3490092
关于积分的说明 11054950
捐赠科研通 3221116
什么是DOI,文献DOI怎么找? 1780408
邀请新用户注册赠送积分活动 865365
科研通“疑难数据库(出版商)”最低求助积分说明 799850