A wavefront adaptive sensing beamformer for ocean acoustic waveguides

自适应波束形成器 波束赋形 多径传播 计算机科学 波前 声纳 干扰(通信) 最小方差无偏估计量 信号子空间 频道(广播) 协方差矩阵 声学 子空间拓扑 信号(编程语言) 算法 电信 数学 噪音(视频) 物理 人工智能 光学 均方误差 图像(数学) 统计 程序设计语言
作者
Anil Ganti,Michael R. Martinez,Granger Hickman,Jeffrey Krolik
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:154 (4): 2398-2409 被引量:4
标识
DOI:10.1121/10.0021310
摘要

This paper addresses robust adaptive beamforming for passive sonar in uncertain, shallow-water environments. Conventional beamforming is still common in passive sonar because adaptive beamformers suffer from signal mismatch in complex multipath environments. Existing approaches to robust adaptive beamforming try to model and account for the uncertainty in the beamformer's hypothesized signal subspace by using additional linear or quadratic constraints. Doing so, however, reduces the adaptivity of the beamformer and is prone to insufficiently suppressing interference. Instead, this paper uses blind source separation methods to adaptively estimate the complex spatial wavefronts of both targets and interference without requiring detailed physical modeling of the channel. By exploiting the different temporal spectra and/or frequency-selective multipath fading of targets and interference, this approach constructs a "signal-free" covariance matrix without imposing directional gain constraints. In doing so, the wavefront adaptive sensing (WAS) beamformer is able to separate targets from strong interference that is within the conventional beam width of the target. Simulation results in a realistic shallow-water channel are presented as well as results using the SWellEx96 S59 data with an injected target to show that the proposed WAS beamformer outperforms conventional and minimum variance adaptive beamformers in a shallow-water scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
使命发布了新的文献求助10
1秒前
疯狂的沛岚完成签到,获得积分10
1秒前
2秒前
2秒前
小马甲应助周炎采纳,获得10
2秒前
Maxine发布了新的文献求助10
2秒前
xjtuwang0618完成签到,获得积分10
2秒前
善学以致用应助鳗鱼落雁采纳,获得10
3秒前
Zurich完成签到,获得积分20
3秒前
小二郎应助暴躁的凌柏采纳,获得10
4秒前
4秒前
酷波er应助贝林厄姆采纳,获得10
5秒前
崔win发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
9秒前
酷波er应助小单采纳,获得10
9秒前
naiyantang完成签到 ,获得积分10
9秒前
清风明月发布了新的文献求助10
9秒前
背后的雪巧完成签到,获得积分10
9秒前
大模型应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
花开那年发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Planning For Autonomous Aerial Interception Of UAVs 550
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122312
求助须知:如何正确求助?哪些是违规求助? 3660219
关于积分的说明 11586068
捐赠科研通 3361513
什么是DOI,文献DOI怎么找? 1847080
邀请新用户注册赠送积分活动 911647
科研通“疑难数据库(出版商)”最低求助积分说明 827517