Weighted gene co‐expression network analysis and machine learning identified the lipid metabolism‐related gene LGMN as a novel biomarker for keloid

瘢痕疙瘩 生物标志物 基因表达 免疫系统 基因 脂质代谢 生物 计算生物学 医学 免疫学 遗传学 病理 生物化学
作者
Qirui Wang,Xingtai Huang,Siyi Zeng,Renpeng Zhou,Danru Wang
出处
期刊:Experimental Dermatology [Wiley]
卷期号:33 (1) 被引量:3
标识
DOI:10.1111/exd.14974
摘要

Abstract The aetiology of keloid formation remains unclear, and existing treatment modalities have not definitively established a successful approach. Therefore, it is necessary to identify reliable and novel keloid biomarkers as potential targets for therapeutic interventions. In this study, we performed differential expression analysis and functional enrichment analysis on the keloid related datasets, and found that multiple metabolism‐related pathways were associated with keloid formation. Subsequently, the differentially expressed genes (DEGs) were intersected with the results of weighted gene co‐expression network analysis (WGCNA) and the lipid metabolism‐related genes (LMGs). Then, three learning machine algorithms (SVM‐RFE, LASSO and Random Forest) together identified legumain (LGMN) as the most critical LMGs. LGMN was overexpressed in keloid and had a high diagnostic performance. The protein–protein interaction (PPI) network related to LGMN was constructed by GeneMANIA database. Functional analysis of indicated PPI network was involved in multiple immune response‐related biological processes. Furthermore, immune infiltration analysis was conducted using the CIBERSORT method. M2‐type macrophages were highly infiltrated in keloid tissues and were found to be significantly and positively correlated with LGMN expression. Gene set variation analysis (GSVA) indicated that LGMN may be related to promoting fibroblast proliferation and inhibiting their apoptosis. Moreover, eight potential drug candidates for keloid treatment were predicted by the DSigDB database. Western blot, qRT‐PCR and immunohistochemistry staining results confirmed that LGMN was highly expressed in keloid. Collectively, our findings may identify a new biomarker and therapeutic target for keloid and contribute to the understanding of the potential pathogenesis of keloid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助nenoaowu采纳,获得10
1秒前
Orange应助www采纳,获得10
2秒前
脑洞疼应助Ricky采纳,获得10
2秒前
独特的尔风完成签到,获得积分10
6秒前
汉堡包应助柔之采纳,获得10
8秒前
Ashely完成签到,获得积分10
8秒前
Robin完成签到,获得积分10
9秒前
达克赛德完成签到 ,获得积分10
11秒前
酷波er应助forge采纳,获得10
11秒前
罗实完成签到 ,获得积分10
12秒前
14秒前
怕黑向秋完成签到,获得积分10
15秒前
Robin发布了新的文献求助10
18秒前
smin完成签到,获得积分10
18秒前
NexusExplorer应助无心的土豆采纳,获得10
20秒前
21秒前
21秒前
科研通AI5应助小天采纳,获得10
21秒前
26秒前
forge发布了新的文献求助10
28秒前
28秒前
huangJP完成签到,获得积分10
28秒前
故意的问安完成签到 ,获得积分10
29秒前
科研通AI2S应助等待盼雁采纳,获得10
29秒前
难过的达完成签到 ,获得积分10
29秒前
受伤哈密瓜完成签到 ,获得积分10
30秒前
31秒前
Ricky发布了新的文献求助10
31秒前
31秒前
顺顺科研完成签到 ,获得积分10
36秒前
科研发发发完成签到 ,获得积分10
36秒前
Robin发布了新的文献求助10
38秒前
难过的达发布了新的文献求助10
38秒前
39秒前
研友_Z6QEAn应助柔之采纳,获得10
39秒前
737完成签到,获得积分10
39秒前
zjq完成签到,获得积分10
42秒前
dhua发布了新的文献求助30
44秒前
45秒前
坚强幼荷完成签到,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415