Weighted gene co‐expression network analysis and machine learning identified the lipid metabolism‐related gene LGMN as a novel biomarker for keloid

瘢痕疙瘩 生物标志物 基因表达 免疫系统 基因 脂质代谢 生物 计算生物学 医学 免疫学 遗传学 病理 生物化学
作者
Qirui Wang,Xingtai Huang,Siyi Zeng,Renpeng Zhou,Danru Wang
出处
期刊:Experimental Dermatology [Wiley]
卷期号:33 (1) 被引量:5
标识
DOI:10.1111/exd.14974
摘要

Abstract The aetiology of keloid formation remains unclear, and existing treatment modalities have not definitively established a successful approach. Therefore, it is necessary to identify reliable and novel keloid biomarkers as potential targets for therapeutic interventions. In this study, we performed differential expression analysis and functional enrichment analysis on the keloid related datasets, and found that multiple metabolism‐related pathways were associated with keloid formation. Subsequently, the differentially expressed genes (DEGs) were intersected with the results of weighted gene co‐expression network analysis (WGCNA) and the lipid metabolism‐related genes (LMGs). Then, three learning machine algorithms (SVM‐RFE, LASSO and Random Forest) together identified legumain (LGMN) as the most critical LMGs. LGMN was overexpressed in keloid and had a high diagnostic performance. The protein–protein interaction (PPI) network related to LGMN was constructed by GeneMANIA database. Functional analysis of indicated PPI network was involved in multiple immune response‐related biological processes. Furthermore, immune infiltration analysis was conducted using the CIBERSORT method. M2‐type macrophages were highly infiltrated in keloid tissues and were found to be significantly and positively correlated with LGMN expression. Gene set variation analysis (GSVA) indicated that LGMN may be related to promoting fibroblast proliferation and inhibiting their apoptosis. Moreover, eight potential drug candidates for keloid treatment were predicted by the DSigDB database. Western blot, qRT‐PCR and immunohistochemistry staining results confirmed that LGMN was highly expressed in keloid. Collectively, our findings may identify a new biomarker and therapeutic target for keloid and contribute to the understanding of the potential pathogenesis of keloid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助殊归采纳,获得10
刚刚
1秒前
云来如梦完成签到,获得积分10
1秒前
1秒前
852应助gzmejiji采纳,获得10
1秒前
2秒前
COCO发布了新的文献求助10
2秒前
忧心的碧完成签到,获得积分10
3秒前
Martin_L应助机灵安白采纳,获得10
3秒前
QDDYR完成签到,获得积分10
4秒前
旺德福完成签到 ,获得积分10
4秒前
4秒前
4秒前
核桃应助啊251采纳,获得10
4秒前
axin完成签到,获得积分10
4秒前
无花果应助沐林杨采纳,获得10
5秒前
waaan完成签到,获得积分10
5秒前
5秒前
木子木子吱吱完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Smiley发布了新的文献求助10
6秒前
7秒前
7秒前
朴实草莓发布了新的文献求助10
7秒前
加贝火火完成签到 ,获得积分10
8秒前
黄黄发布了新的文献求助10
8秒前
summer发布了新的文献求助20
8秒前
左手的左手是左手完成签到,获得积分10
9秒前
agui发布了新的文献求助10
9秒前
积极的音响完成签到,获得积分10
10秒前
ED应助骄傲yy采纳,获得30
10秒前
天凉王破完成签到 ,获得积分10
10秒前
迷路的依波完成签到,获得积分10
10秒前
10秒前
自由大叔发布了新的文献求助10
10秒前
doggy00发布了新的文献求助10
10秒前
10秒前
xiaonan发布了新的文献求助10
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139042
求助须知:如何正确求助?哪些是违规求助? 3675836
关于积分的说明 11619628
捐赠科研通 3370051
什么是DOI,文献DOI怎么找? 1851224
邀请新用户注册赠送积分活动 914417
科研通“疑难数据库(出版商)”最低求助积分说明 829239