清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Pseudo-Label Guided Contrastive Learning for Semi-Supervised Medical Image Segmentation

判别式 计算机科学 人工智能 分割 模式识别(心理学) 图像分割 机器学习
作者
Hritam Basak,Zhaozheng Yin
标识
DOI:10.1109/cvpr52729.2023.01895
摘要

Although recent works in semi-supervised learning (SemiSL) have accomplished significant success in natural image segmentation, the task of learning discriminative representations from limited annotations has been an open problem in medical images. Contrastive Learning (CL) frameworks use the notion of similarity measure which is useful for classification problems, however, they fail to transfer these quality representations for accurate pixel-level segmentation. To this end, we propose a novel semi-supervised patch-based CL framework for medical image segmentation without using any explicit pretext task. We harness the power of both CL and SemiSL, where the pseudo-labels generated from SemiSL aid CL by providing additional guidance, whereas discriminative class information learned in CL leads to accurate multi-class segmentation. Additionally, we formulate a novel loss that synergistically encourages inter-class separability and intraclass compactness among the learned representations. A new inter-patch semantic disparity mapping using average patch entropy is employed for a guided sampling of positives and negatives in the proposed CL framework. Experimental analysis on three publicly available datasets of multiple modalities reveals the superiority of our proposed method as compared to the state-of-the-art methods. Code is available at: GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
糊涂的青烟完成签到 ,获得积分10
10秒前
小贾爱喝冰美式完成签到 ,获得积分10
21秒前
殷勤的紫槐完成签到,获得积分0
32秒前
38秒前
bkagyin应助科研通管家采纳,获得30
51秒前
MchemG应助科研通管家采纳,获得10
51秒前
MchemG应助科研通管家采纳,获得10
51秒前
早茶的馄饨完成签到,获得积分20
56秒前
丘比特应助早茶的馄饨采纳,获得30
1分钟前
1分钟前
1分钟前
紫焰完成签到 ,获得积分10
1分钟前
1分钟前
鲤鱼山人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
orixero应助天玄采纳,获得10
2分钟前
思源应助天玄采纳,获得10
2分钟前
爆米花应助天玄采纳,获得10
2分钟前
科研通AI6应助天玄采纳,获得10
2分钟前
科研通AI6应助秋半雪采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
冷酷的大山完成签到,获得积分10
4分钟前
xh完成签到 ,获得积分10
4分钟前
和风完成签到 ,获得积分10
4分钟前
4分钟前
Funnymudpee发布了新的文献求助10
4分钟前
清脆的大开完成签到,获得积分10
4分钟前
彦子完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482527
求助须知:如何正确求助?哪些是违规求助? 4583310
关于积分的说明 14389170
捐赠科研通 4512454
什么是DOI,文献DOI怎么找? 2472968
邀请新用户注册赠送积分活动 1459145
关于科研通互助平台的介绍 1432646