Dynamic prediction of residual life with longitudinal covariates using long short-term memory networks

杠杆(统计) 残余物 协变量 计算机科学 背景(考古学) 机器学习 人工智能 生物标志物 数据挖掘 算法 生物化学 生物 古生物学 化学
作者
Grace Rhodes,Marie Davidian,Wenbin Lu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:17 (3) 被引量:3
标识
DOI:10.1214/22-aoas1706
摘要

Sepsis, a complex medical condition that involves severe infections with life-threatening organ dysfunction, is a leading cause of death worldwide. Treatment of sepsis is highly challenging. When making treatment decisions, clinicians and patients desire accurate predictions of mean residual life (MRL) that leverage all available patient information, including longitudinal biomarker data. Biomarkers are biological, clinical, and other variables reflecting disease progression that are often measured repeatedly on patients in the clinical setting. Dynamic prediction methods leverage accruing biomarker measurements to improve performance, providing updated predictions as new measurements become available. We introduce two methods for dynamic prediction of MRL using longitudinal biomarkers. in both methods, we begin by using long short-term memory networks (LSTMs) to construct encoded representations of the biomarker trajectories, referred to as "context vectors." In our first method, the LSTM-GLM, we dynamically predict MRL via a transformed MRL model that includes the context vectors as covariates. In our second method, the LSTM-NN, we dynamically predict MRL from the context vectors using a feed-forward neural network. We demonstrate the improved performance of both proposed methods relative to competing methods in simulation studies. We apply the proposed methods to dynamically predict the restricted mean residual life (RMRL) of septic patients in the intensive care unit using electronic medical record data. We demonstrate that the LSTM-GLM and the LSTM-NN are useful tools for producing individualized, real-time predictions of RMRL that can help inform the treatment decisions of septic patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
8秒前
昭谏完成签到,获得积分10
9秒前
慕青应助zhul采纳,获得10
11秒前
yhhhhh发布了新的文献求助10
13秒前
不安梦桃完成签到 ,获得积分10
13秒前
桐桐应助小满胜万全采纳,获得10
16秒前
所所应助霸气的梦露采纳,获得10
18秒前
科研通AI5应助ct551144采纳,获得10
19秒前
重要忆秋完成签到,获得积分10
19秒前
20秒前
研友_VZG7GZ应助cnulee采纳,获得10
20秒前
Andrew完成签到,获得积分10
20秒前
爆米花应助昭谏采纳,获得10
21秒前
喔喔佳佳完成签到 ,获得积分10
22秒前
蓝桉完成签到,获得积分10
22秒前
恐怖稽器人完成签到,获得积分10
23秒前
HMR完成签到 ,获得积分10
24秒前
zhul发布了新的文献求助10
25秒前
Yu完成签到,获得积分10
26秒前
26秒前
HOMO完成签到,获得积分10
26秒前
26秒前
科研通AI5应助内向的乾采纳,获得10
27秒前
李健的小迷弟应助advance采纳,获得10
28秒前
30秒前
mfy发布了新的文献求助10
30秒前
DODO完成签到,获得积分10
31秒前
33秒前
韩_完成签到,获得积分10
33秒前
34秒前
zhul完成签到,获得积分10
36秒前
cnulee发布了新的文献求助10
37秒前
37秒前
38秒前
jailbreaker完成签到 ,获得积分10
38秒前
ljcznhy发布了新的文献求助10
39秒前
39秒前
碧蓝的机器猫完成签到 ,获得积分10
39秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214659
捐赠科研通 3038693
什么是DOI,文献DOI怎么找? 1667611
邀请新用户注册赠送积分活动 798220
科研通“疑难数据库(出版商)”最低求助积分说明 758315