亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Breaking the Tradeoffs between Different Mechanical Properties in Bioinspired Hierarchical Lattice Metamaterials

超材料 材料科学 格子(音乐) 韧性 极限抗拉强度 复合材料 结构工程 光电子学 声学 物理 工程类
作者
Peng Wang,Fan Yang,Bailin Zheng,Pengfei Li,Ruicheng Wang,Yan Li,Hualin Fan,Xiaoyan Li
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (45) 被引量:100
标识
DOI:10.1002/adfm.202305978
摘要

Abstract It is a long‐standing challenge to break the tradeoffs between different mechanical property indicators such as the strength versus toughness in the design of lightweight lattice materials. To tackle this challenge, a hierarchical lattice metamaterial with modified face‐centered cubic (FCC) cell configuration, inspired by the glass sponge skeletal system, is proposed. The proposed lattice metamaterial simultaneously possesses high strength, high energy absorption, considerable toughness, as well as controllable deformation patterns through integration of both bionic features of double diagonal reinforcement and hierarchical circular modification. The compressive strength and energy absorption can reach 69.13 MPa and 53.39 J cm 3 , respectively. Furthermore, the proposed lattice also exhibits exceptionally high damage tolerance compared with existing lattice metamaterials with comparable strength by attenuating stress and deformation concentration that may cause catastrophic collapse. This design approach combines the advantages of tensile‐dominated and bending‐dominated lattices. Quantitatively, in terms of specific strength, specific energy absorption, and crushing force efficiency, the modified hierarchical circular FCC (MHCFCC) lattice metamaterial outperforms the Octet lattice by 14.85%, 53.28%, and 110.52%, respectively. This multibionic feature integration approach provides advanced design strategies for high‐performance architected metamaterials with promising application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
7秒前
跳跃应助科研通管家采纳,获得10
7秒前
跳跃应助科研通管家采纳,获得10
7秒前
CodeCraft应助材料生采纳,获得10
21秒前
vetzlk完成签到 ,获得积分10
24秒前
37秒前
平淡冷发布了新的文献求助10
40秒前
NattyPoe应助歪梨小羊采纳,获得10
45秒前
51秒前
材料生发布了新的文献求助10
55秒前
1分钟前
1分钟前
1分钟前
英姑应助小小K采纳,获得10
1分钟前
香蕉觅云应助阿星采纳,获得10
1分钟前
1分钟前
小小K发布了新的文献求助10
1分钟前
明理觅风完成签到 ,获得积分10
1分钟前
1分钟前
古手咪啪发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
完美世界应助简宁采纳,获得10
2分钟前
李健应助liyang采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
charih完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
简宁发布了新的文献求助10
2分钟前
SciGPT应助zmjmj采纳,获得10
2分钟前
3分钟前
没见云发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755305
求助须知:如何正确求助?哪些是违规求助? 5493226
关于积分的说明 15381070
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632125
邀请新用户注册赠送积分活动 1579966
关于科研通互助平台的介绍 1535776