Task Offloading of Intelligent Building Based on Dependency-Aware in Edge Computing

计算机科学 移动边缘计算 服务器 能源消耗 边缘计算 分布式计算 延迟(音频) GSM演进的增强数据速率 云计算 计算机网络 人工智能 操作系统 生态学 电信 生物
作者
Lingzhi Yi,Jianxiong Huang,Yahui Wang,Long Jiao,Luo Bote,Jiangyong Liu
出处
期刊:Recent Patents on Mechanical Engineering [Bentham Science Publishers]
卷期号:16 (5): 373-385
标识
DOI:10.2174/2212797616666230831124454
摘要

Background: With the rapid development of artificial intelligence, the traditional cloud computing model has serious bandwidth and energy consumption problems when storing and processing massive amounts of raw data. To address this problem, recent patents have investigated methods for intelligent task offloading and allocation in mobile edge computing. Objective: A Directed Acyclic Graph (DAG) task unloading model is established to reduce the problem of task delay and energy consumption in edge networks. At the same time, the Modified Tuna Swarm Optimization (MTSO) is used to improve the execution efficiency. Methods: Firstly, this paper integrates (i) inter-task dependencies; (ii) heterogeneity of computing resources in the edge network; and (iii) interference of wireless channels in the edge network. A DAG task offloading model is developed to reduce latency and energy consumption. The end users are guided to offload their tasks/sub-tasks to the most appropriate servers in the edge network, thus minimizing the end-to-end latency of all tasks in the edge network. Secondly, the MTSO algorithm is used to coordinate the dependencies and priorities of subtasks to improve execution efficiency. Results: The experimental results show that when the number of users including subtasks is 10, the final edge server utilization rate is as high as 92%. A more fine-grained segmentation scheme can reduce the average delay of tasks and improve the utilization rate of edge servers. Conclusion: The approach proposed in this paper reduces the end-to-end latency and improves resource utilization in complex applications under the premise of ensuring task dependency. It well relieves the pressure on the cloud and has certain engineering application value
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助江十三采纳,获得10
刚刚
1秒前
学渣渣完成签到,获得积分10
2秒前
2秒前
无花果应助令狐初之采纳,获得10
3秒前
4秒前
SYLH应助传统的钧采纳,获得10
4秒前
摸俞发布了新的文献求助10
4秒前
4秒前
koala完成签到,获得积分10
5秒前
牛爷爷应助Doki采纳,获得10
5秒前
6秒前
wz发布了新的文献求助10
10秒前
orangel完成签到,获得积分10
11秒前
zy大章鱼完成签到,获得积分10
12秒前
15秒前
真实的天蓉完成签到,获得积分20
16秒前
忧郁夜天发布了新的文献求助10
17秒前
17秒前
聪慧的乐驹完成签到,获得积分10
17秒前
房东家的猫完成签到,获得积分10
18秒前
18秒前
JING完成签到,获得积分20
18秒前
量子星尘发布了新的文献求助10
18秒前
DFT完成签到,获得积分10
19秒前
19秒前
斯文败类应助XMY147305采纳,获得10
19秒前
Akim应助duohao2023采纳,获得10
20秒前
20秒前
无辜秋珊发布了新的文献求助10
21秒前
21秒前
Sid完成签到,获得积分10
21秒前
十一发布了新的文献求助10
22秒前
pluto应助草莓熊采纳,获得10
23秒前
hahamissyu完成签到,获得积分10
23秒前
23秒前
星辰大海应助小鹿采纳,获得10
28秒前
顶刊我来了完成签到,获得积分10
30秒前
科研通AI5应助余晖霞光采纳,获得10
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978025
求助须知:如何正确求助?哪些是违规求助? 3522174
关于积分的说明 11211799
捐赠科研通 3259432
什么是DOI,文献DOI怎么找? 1799614
邀请新用户注册赠送积分活动 878477
科研通“疑难数据库(出版商)”最低求助积分说明 806918