发射率
红外窗口
辐射冷却
辐射传输
光学
宽带
材料科学
伪装
平面的
红外线的
热的
光电子学
物理
计算机科学
天体物理学
气象学
计算机图形学(图像)
人工智能
作者
Yunbin Ying,Jianbo Yu,Bing Qin,Meng Zhao,Tianze Zhou,Weidong Shen,Min Qiu,Qiang Li
标识
DOI:10.1002/lpor.202300407
摘要
Abstract Controlling directional thermal emission to match the ultra‐broadband atmospheric window is a long‐standing scientific challenge. Here, a strategy is introduced for achieving ultra‐broadband directional thermal emission matching the atmospheric window by combining Fabry–Perot resonances and the Brewster effect. The planar system, comprising a thin dielectric film (Ge) on a radiative substrate, exhibits high p ‐polarized emissivity (> 0.9) at specific directions (76°–84°) covering the entire atmospheric window (3–5 and 8–14 µm) and high omnidirectional emission (> 0.7) in the non‐atmospheric window (5–8 µm) for simultaneous efficient radiative cooling. Moreover, it can integrate independent dual‐band (visible–IR) information encryption and the infrared information anti‐snooping function. The approach offers unique insights into controlling thermal emission using planar films, with broad implications in camouflage, thermal management, and encryption.
科研通智能强力驱动
Strongly Powered by AbleSci AI