亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Edge device-based real-time implementation of CycleGAN for the colorization of infrared video

计算机科学 人工智能 推论 GSM演进的增强数据速率 RGB颜色模型 边缘设备 计算机视觉 实时计算 云计算 操作系统
作者
Ruimin Huang,Huaqiang Wang,Xiaoqiao Huang,Yonghang Tai,Feiyan Cheng,Junsheng Shi
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:149: 402-415 被引量:4
标识
DOI:10.1016/j.future.2023.07.040
摘要

Edge computing has gained significant attention as a pivotal technology for practical implementation of machine learning. Nevertheless, resource-constrained edge devices face challenges in meeting the performance requirements of latency-sensitive applications. Moreover, computationally intensive applications such as CycleGAN pose further hindrances to the practical utilization of machine learning. To overcome these challenges, we proposed a hybrid method that combines the implementation of a lightweight model with optimization in deployment. Initially, a lightweight sub-network is derived from a student network obtained through distillation while considering the trade-off between performance and computational complexity. Subsequently, a quantization model is deployed for low-precision inference, resulting in a substantial reduction of inference time. Finally, we apply this approach to a real-life application: a real-time headset for color night vision from infrared videos. For this purpose, three datasets of image pairs comprising long-wave infrared, visible light RGB, and up to near-infrared images are collected. Using these datasets, a lightweight implementation of the CycleGAN model is trained to translate infrared images to RGB images. To ensure efficiency, the model is deployed in a low-precision inference manner using C++ on three different hardware platforms: Jetson Xavier NX, RK3399 Pro, and Raspberry Pi, each with distinct hardware architectures. Image quality and model efficiency are thoroughly analyzed. Experimental results demonstrate that our hybrid method drastically reduces inference time from 112 ms to 17 ms per frame at a resolution of 256 × 256 on the Jetson Xavier NX platform. This improvement is accompanied by only a slight degradation in image quality, enabling a real-time video frame rate close to 60 fps, thereby meeting the requirements for a real-world real-time headset for color night vision applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
hank完成签到 ,获得积分10
25秒前
27秒前
alex_zhao完成签到,获得积分10
27秒前
27秒前
29秒前
张张发布了新的文献求助10
36秒前
1分钟前
张张发布了新的文献求助10
1分钟前
MartinaLZ应助张张采纳,获得10
1分钟前
科研通AI2S应助张张采纳,获得10
1分钟前
可爱的函函应助张张采纳,获得10
1分钟前
满意访冬完成签到,获得积分20
2分钟前
2分钟前
科研通AI5应助满意访冬采纳,获得10
2分钟前
渡己完成签到 ,获得积分10
2分钟前
Oracle应助bruna采纳,获得100
2分钟前
wanjingwan完成签到 ,获得积分10
3分钟前
3分钟前
提桶跑路完成签到 ,获得积分10
3分钟前
3分钟前
满意访冬发布了新的文献求助10
3分钟前
于清绝完成签到 ,获得积分10
4分钟前
昏睡的乌冬面完成签到 ,获得积分10
4分钟前
小白菜完成签到,获得积分10
4分钟前
浮生若梦完成签到,获得积分10
4分钟前
搜集达人应助YD采纳,获得10
4分钟前
5分钟前
YD发布了新的文献求助10
5分钟前
5分钟前
Dannnn发布了新的文献求助10
5分钟前
潇洒新筠发布了新的文献求助10
5分钟前
stuuuuuuuuuuudy完成签到 ,获得积分10
6分钟前
asdwind完成签到,获得积分10
6分钟前
little完成签到,获得积分10
6分钟前
喜悦的小土豆完成签到 ,获得积分10
7分钟前
loen完成签到,获得积分10
7分钟前
小二郎应助科研通管家采纳,获得10
7分钟前
7分钟前
yang完成签到,获得积分10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212809
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667308
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229