Treat Noise as Domain Shift: Noise Feature Disentanglement for Underwater Perception and Maritime Surveys in Side-Scan Sonar Images

计算机科学 散斑噪声 人工智能 噪音(视频) 水下 侧扫声纳 斑点图案 计算机视觉 声纳 模式识别(心理学) 特征(语言学) 乘性噪声 电信 地质学 图像(数学) 语言学 海洋学 哲学 信号传递函数 传输(电信) 模拟信号
作者
Yongcan Yu,Jianhu Zhao,Chao Huang,Xi Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3322787
摘要

In underwater perception and maritime surveys, due to the scarcity of training data and perturbation of speckle noise, the detection performance of underwater objects in side-scan sonar (SSS) images is limited. To address these problems, we proposed a noise feature disentanglement YOLO (NFD-YOLO) by combining noise-agnostic features learning and attention mechanism. Firstly, we rethink the speckle noise by treating it as the domain shift between the training dataset and real-measured SSS images and build a domain generalization-based (DG-based) underwater object detection framework. Then, we extend YOLOv5 with a feature manipulation module, a noise-agnostic subnetwork, and an auxiliary noise-biased subnetwork for noise features disentanglement, more biases toward noise-agnostic features and less reliance on noise-biased features in underwater object detection, respectively. Finally, the ACmix attention module is introduced for a more powerful learning capacity and attention to the object areas based on a small dataset. According to the experiment results, the proposed NFD-YOLO achieved 75.1% mean average precision (mAP) in the test domain, which increased by 7.5% than YOLOv5, and 75.7% ± 0.4% mAP and 77.5% ± 1.6% mAP for different speckle noise distributions and transfer directions, respectively, which verified its generalization ability and robustness for speckle noise. Therefore, the proposed method can mitigate the effects of speckle noise and provides a new thought to address the speckle noise in underwater object detection with a small dataset, which is of significance and benefits for underwater perception and maritime surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
猪猪hero发布了新的文献求助10
2秒前
林夏果完成签到,获得积分10
2秒前
幽默的太阳完成签到 ,获得积分10
2秒前
钱从四面八方来完成签到,获得积分10
3秒前
研友_nVWP2Z发布了新的文献求助10
3秒前
科研小白完成签到,获得积分10
7秒前
9秒前
AR完成签到,获得积分10
9秒前
梦想or现实完成签到,获得积分10
9秒前
Priority应助cellphone采纳,获得30
9秒前
Hello应助王明梓采纳,获得10
10秒前
Ekko完成签到,获得积分10
11秒前
叶祥完成签到,获得积分10
12秒前
Yiling发布了新的文献求助10
19秒前
20秒前
23秒前
烟花应助Tim采纳,获得10
25秒前
桔梗发布了新的文献求助10
26秒前
26秒前
lQ发布了新的文献求助10
27秒前
王京文发布了新的文献求助10
33秒前
Solarenergy完成签到,获得积分0
33秒前
win完成签到 ,获得积分10
33秒前
orixero应助邮电部诗人采纳,获得10
34秒前
爆米花应助Lze采纳,获得10
35秒前
今后应助Lze采纳,获得10
35秒前
SciGPT应助Lze采纳,获得10
35秒前
bkagyin应助Lze采纳,获得10
35秒前
今后应助Lze采纳,获得10
35秒前
无花果应助Lze采纳,获得10
35秒前
CodeCraft应助Lze采纳,获得10
35秒前
无花果应助Lze采纳,获得10
35秒前
希望天下0贩的0应助Lze采纳,获得10
35秒前
思源应助Lze采纳,获得10
35秒前
杏林居士完成签到,获得积分10
36秒前
后会无期完成签到,获得积分10
37秒前
DAYDAY完成签到 ,获得积分10
38秒前
顾矜应助ReadyToWork采纳,获得10
38秒前
38秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3911402
求助须知:如何正确求助?哪些是违规求助? 3457072
关于积分的说明 10892906
捐赠科研通 3183395
什么是DOI,文献DOI怎么找? 1759622
邀请新用户注册赠送积分活动 851039
科研通“疑难数据库(出版商)”最低求助积分说明 792385