Bioinspired CuZn-N/C Single-Atom Nanozyme with High Substrate Specificity for Selective Online Monitoring of Epinephrine in Living Brain

化学 催化作用 配体(生物化学) 基质(水族馆) 分子 吸附 密度泛函理论 选择性 金属 组合化学 结晶学 无机化学 立体化学 计算化学 物理化学 有机化学 地质学 海洋学 受体 生物化学
作者
Mengying Li,Guo Wang,Jing Dai,Zhiqiang Zhao,Yadong Zhe,Huan Yang,Yuqing Lin
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (38): 14365-14374 被引量:27
标识
DOI:10.1021/acs.analchem.3c02739
摘要

Though many elegant laccase mimics have emerged, these mimics generally have no substrate selectivity as well as low activity, making it difficult to fulfill the demand for monitoring in physiological conditions. Herein, inspired by the Cu-N ligand structure in the active site of natural laccase, we revealed that a carbon nanomaterial with atomically dispersed Cu and Zn atoms (CuZn-N/C) and a well-defined ligand structure could function as an effective laccase mimic for selectively catalyzing epinephrine (EP) oxidation. Catalytic activity of the CuZn-N/C nanozyme was superior to those of Cu-N/C and Zn-N/C and featured a Km value nearly 3-fold lower than that of natural laccase, which indicated that CuZn-N/C has a better affinity for EP. Density functional theory (DFT) revealed the mechanism of the superior catalytic ability of dual-metal CuZn-N/C as follows: (1) the exact distance of the two metal atoms in the CuZn-N/C catalyst makes it suitable for adsorption of the EP molecule, and the CuZn-N/C catalyst can offer the second hydrogen bond that stabilizes the adsorption; (2) molecular orbitals and density of states indicate that the strong interaction between the EP molecule and CuZn-N/C is important for EP catalytic oxidization. Furthermore, a sensitive and selective online optical detection platform (OODP) is constructed for determining EP with a low limit of detection (LOD) of 0.235 μM and a linear range of 0.2-20 μM. The system allows real-time measurement of EP release in the rat brain in vivo following ischemia with dexmedetomidine administration. This work not only provides an idea of designing efficient laccase mimics but also builds a promising chemical platform for better understanding EP-related drug action for ischemic cerebrovascular illnesses and opens up possibilities to explore brain function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助zzzzzzp采纳,获得10
1秒前
绿绿发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助kk采纳,获得10
6秒前
7秒前
8秒前
科研通AI5应助杨耑耑采纳,获得30
8秒前
10秒前
香蕉觅云应助Wang1991采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
巷南棠完成签到,获得积分10
11秒前
吞吞完成签到,获得积分10
12秒前
14秒前
vk发布了新的文献求助10
14秒前
sci_peiqi完成签到,获得积分20
15秒前
cissie完成签到 ,获得积分10
15秒前
不安青牛应助王赟赟采纳,获得10
16秒前
马铣飞发布了新的文献求助10
16秒前
zyw发布了新的文献求助10
16秒前
17秒前
gsx完成签到,获得积分10
17秒前
不安青牛应助咖啡先生采纳,获得10
18秒前
风筝发布了新的文献求助10
19秒前
masterwjc完成签到,获得积分10
19秒前
19秒前
琉璃苣完成签到,获得积分20
20秒前
22秒前
11完成签到,获得积分10
23秒前
CipherSage应助虚掩的门采纳,获得10
23秒前
李健应助虚掩的门采纳,获得10
23秒前
NexusExplorer应助虚掩的门采纳,获得10
23秒前
脑洞疼应助虚掩的门采纳,获得10
23秒前
烟花应助起風了采纳,获得10
23秒前
lsn发布了新的文献求助10
24秒前
完美的一天完成签到,获得积分10
24秒前
汉堡包应助AI采纳,获得30
24秒前
24秒前
琉璃苣发布了新的文献求助10
25秒前
852应助淡淡夕阳采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Laser-Assisted Machining: Processes and Applications 450
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4622886
求助须知:如何正确求助?哪些是违规求助? 4022985
关于积分的说明 12453685
捐赠科研通 3707343
什么是DOI,文献DOI怎么找? 2044750
邀请新用户注册赠送积分活动 1076899
科研通“疑难数据库(出版商)”最低求助积分说明 959636