Refining biome labeling for large-scale microbial community samples: Leveraging neural networks and transfer learning

生物群落 微生物群 计算机科学 注释 数据科学 人工智能 生物 生态学 生态系统 生物信息学
作者
Nan Wang,Teng Wang,Kang Ning
出处
期刊:Environmental science & ecotechnology [Elsevier BV]
卷期号:17: 100304-100304
标识
DOI:10.1016/j.ese.2023.100304
摘要

Microbiome research has generated an extensive amount of data, resulting in a wealth of publicly accessible samples. Accurate annotation of these samples is crucial for effectively utilizing microbiome data across scientific disciplines. However, a notable challenge arises from the lack of essential annotations, particularly regarding collection location and sample biome information, which significantly hinders environmental microbiome research. In this study, we introduce Meta-Sorter, a novel approach utilizing neural networks and transfer learning, to enhance biome labeling for thousands of microbiome samples in the MGnify database that have incomplete information. Our findings demonstrate that Meta-Sorter achieved a remarkable accuracy rate of 96.7% in classifying samples among the 16,507 lacking detailed biome annotations. Notably, Meta-Sorter provides precise classifications for representative environmental samples that were previously ambiguously labeled as "Marine" in MGnify, thereby elucidating their specific origins in benthic and water column environments. Moreover, Meta-Sorter effectively distinguishes samples derived from human-environment interactions, enabling clear differentiation between environmental and human-related studies. By improving the completeness of biome label information for numerous microbial community samples, our research facilitates more accurate knowledge discovery across diverse disciplines, with particular implications for environmental research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十二发布了新的文献求助20
2秒前
科研通AI5应助成就幻竹采纳,获得30
4秒前
gliding完成签到,获得积分10
5秒前
7秒前
李健的小迷弟应助11111采纳,获得10
7秒前
8秒前
JoeJoe完成签到,获得积分10
9秒前
称心的火车完成签到 ,获得积分10
9秒前
hmj1完成签到,获得积分10
10秒前
风君子发布了新的文献求助10
12秒前
仁怡发布了新的文献求助10
12秒前
深情安青应助Philthee采纳,获得10
13秒前
15秒前
xuweitai完成签到,获得积分10
15秒前
闪闪完成签到,获得积分20
16秒前
17秒前
Ava应助川川川采纳,获得10
18秒前
19秒前
小熊熊完成签到,获得积分10
21秒前
22秒前
慈祥的煎蛋完成签到,获得积分10
23秒前
十二发布了新的文献求助10
24秒前
金金金发布了新的文献求助10
25秒前
共享精神应助why采纳,获得10
26秒前
白榆完成签到,获得积分10
26秒前
28秒前
30秒前
31秒前
xnzll完成签到,获得积分10
31秒前
34秒前
xiaotianli完成签到,获得积分10
35秒前
Alex应助白榆采纳,获得30
35秒前
谦让映菡应助金金金采纳,获得10
37秒前
37秒前
38秒前
minmi发布了新的文献求助20
38秒前
39秒前
爆米花应助chyen采纳,获得10
39秒前
传奇3应助研友_ZragOn采纳,获得10
41秒前
lyk2815发布了新的文献求助10
42秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Knowledge Management in the Pharmaceutical Industry 500
Happiness in the Nordic World 500
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Drug distribution in mammals 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3859552
求助须知:如何正确求助?哪些是违规求助? 3401521
关于积分的说明 10624569
捐赠科研通 3124315
什么是DOI,文献DOI怎么找? 1722838
邀请新用户注册赠送积分活动 829722
科研通“疑难数据库(出版商)”最低求助积分说明 778443