纳米结构
俘获
吸收(声学)
电介质
有机太阳能电池
材料科学
光电子学
纳米技术
生物
生态学
复合材料
聚合物
作者
Seongcheol Ju,Hyeonwoo Kim,Hojae Kwak,Cheolhun Kang,Incheol Jung,Seung-Hyun Oh,Seung Gol Lee,Jeonghyun Kim,Hui Joon Park,Kyu‐Tae Lee
标识
DOI:10.1038/s41598-023-47898-9
摘要
Dielectric scatterers where Mie resonances can be excited in both electric and magnetic modes have emerged as a promising candidate for efficient light trapping (LT) in thin-film solar cells. We present that light absorption in organic solar cells (OSCs) can be significantly enhanced by a front-sided incorporation of a core-shell nanostructure consisting of a high-refractive-index dielectric nanosphere array conformally coated with a low-refractive-index dielectric layer. Strong forward light scattering of the all-dielectric LT structure enables the absorption in an organic semiconductor to be remarkably boosted over a broad range of wavelengths, which is attributed to interference of a simultaneous excitation of the electric and magnetic dipole resonant modes. The OSC with the LT structure shows the short-circuit current density (Jsc) of 28.23 mA/cm2, which is 10% higher than that of a flat OSC. We also explore how the LT structure affects scattering cross-sections, spectral multipole resonances, and far-field radiation patterns. The approach described in this work could offer the possibility for the improvement of characteristic performances of various applications, such as other thin-film solar cells, photodiodes, light-emitting diodes, and absorbers.
科研通智能强力驱动
Strongly Powered by AbleSci AI