Pattern Recognition and Modelling in Electrocardiogram Signals: Early Detection of Myocardial Ischemia and Infraction

心肌梗塞 人工智能 计算机科学 特征提取 工件(错误) 模式识别(心理学) 心肌缺血 缺血 噪音(视频) 医学 心脏病学 图像(数学)
作者
R. Muthalagu,R. Ramachandran,T. Anuradha,Anupama PH,Jose Anand A
标识
DOI:10.1109/icecaa58104.2023.10212133
摘要

Pattern recognition and modeling in electrocardiogram (ECG) signals play an important role in the early detection of myocardial ischemia and infarction, which are serious cardiovascular diseases that require immediate medical attention. This study provides an overview of techniques used for pattern recognition and modeling in ECG signals to aid in the early detection of myocardial ischemia and infarction. First, the article discusses the importance of ECG signals in the diagnosis and monitoring of heart diseases. It highlights specific ECG changes associated with myocardial ischemia. Understanding these ECG patterns is critical for accurate diagnosis and timely intervention. Next, the study explores various techniques used for pattern recognition and modeling in ECG signals. These techniques include classical signal processing methods, filtering, feature extraction and classification algorithms, and advanced approaches such as machine learning and deep learning. The study discusses the strengths and limitations of each technique and their applications in the diagnosis of myocardial ischemia and myocardial infarction. Also, the study addresses challenges in analyzing ECG signals such as noise, artifact interference, and the need for real-time processing. It also discusses the importance of a comprehensive database of annotated ECG signals for training and testing pattern recognition models. Finally, the potential benefits of early detection of myocardial ischemia and myocardial infarction include improved patient outcomes, reduced morbidity and mortality, and efficient use of healthcare resources. This emphasizes the need for further research and development in pattern recognition and modeling techniques to improve the accuracy and efficiency of early detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
平淡纸飞机完成签到 ,获得积分10
2秒前
3秒前
3秒前
一百斤的白胖子完成签到 ,获得积分10
4秒前
小昭发布了新的文献求助30
5秒前
在水一方应助王wangWANG采纳,获得10
5秒前
哗啦啦完成签到,获得积分20
5秒前
5秒前
scifff完成签到,获得积分10
6秒前
6秒前
Xylo完成签到,获得积分10
7秒前
小王发布了新的文献求助10
7秒前
海豚发布了新的文献求助10
7秒前
辛未完成签到 ,获得积分10
7秒前
阔达紫青应助猪猪hero采纳,获得10
7秒前
8秒前
8秒前
XiHuanChi完成签到,获得积分10
8秒前
简单凝莲发布了新的文献求助10
9秒前
哗啦啦发布了新的文献求助30
9秒前
1234发布了新的文献求助10
10秒前
12秒前
pluto应助饕餮五公子采纳,获得10
13秒前
scifff发布了新的文献求助10
13秒前
13秒前
FashionBoy应助百无禁忌采纳,获得10
14秒前
房天川发布了新的文献求助10
17秒前
呜呜完成签到 ,获得积分10
17秒前
禾禾完成签到,获得积分10
17秒前
打打应助顾子墨采纳,获得10
18秒前
18秒前
18秒前
矮小的尔曼完成签到,获得积分10
18秒前
野性的曼香完成签到,获得积分10
19秒前
王wangWANG发布了新的文献求助10
19秒前
妮妮完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Absent Here 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen 200
Die neue Frauenbewegung in Deutschland. Abschied vom kleinen Unterschied. Eine Quellensammlung 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4347555
求助须知:如何正确求助?哪些是违规求助? 3853698
关于积分的说明 12028361
捐赠科研通 3495436
什么是DOI,文献DOI怎么找? 1917872
邀请新用户注册赠送积分活动 960671
科研通“疑难数据库(出版商)”最低求助积分说明 860487