Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective

背景(考古学) 疾病 人工智能 计算机科学 机制(生物学) 精密医学 医学 癌症 数据科学 重症监护医学 病理 生物 认识论 内科学 哲学 古生物学
作者
Muhammad Sufyan,Zeeshan Shokat,Usman Ali Ashfaq
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107356-107356 被引量:54
标识
DOI:10.1016/j.compbiomed.2023.107356
摘要

Artificial intelligence (AI) in healthcare plays a pivotal role in combating many fatal diseases, such as skin, breast, and lung cancer. AI is an advanced form of technology that uses mathematical-based algorithmic principles similar to those of the human mind for cognizing complex challenges of the healthcare unit. Cancer is a lethal disease with many etiologies, including numerous genetic and epigenetic mutations. Cancer being a multifactorial disease is difficult to be diagnosed at an early stage. Therefore, genetic variations and other leading factors could be identified in due time through AI and machine learning (ML). AI is the synergetic approach for mining the drug targets, their mechanism of action, and drug-organism interaction from massive raw data. This synergetic approach is also facing several challenges in data mining but computational algorithms from different scientific communities for multi-target drug discovery are highly helpful to overcome the bottlenecks in AI for drug-target discovery. AI and ML could be the epicenter in the medical world for the diagnosis, treatment, and evaluation of almost any disease in the near future. In this comprehensive review, we explore the immense potential of AI and ML when integrated with the biological sciences, specifically in the context of cancer research. Our goal is to illuminate the many ways in which AI and ML are being applied to the study of cancer, from diagnosis to individualized treatment. We highlight the prospective role of AI in supporting oncologists and other medical professionals in making informed decisions and improving patient outcomes by examining the intersection of AI and cancer control. Although AI-based medical therapies show great potential, many challenges must be overcome before they can be implemented in clinical practice. We critically assess the current hurdles and provide insights into the future directions of AI-driven approaches, aiming to pave the way for enhanced cancer interventions and improved patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助yk采纳,获得10
刚刚
科研发布了新的文献求助10
刚刚
学习猴发布了新的文献求助10
1秒前
chen发布了新的文献求助10
1秒前
1秒前
happiness发布了新的文献求助10
2秒前
2秒前
焚蕊听水榭完成签到,获得积分10
2秒前
3秒前
琉璃岁月发布了新的文献求助20
3秒前
4秒前
eros完成签到,获得积分10
5秒前
5秒前
共享精神应助姜茶采纳,获得10
6秒前
烧瓶杀手发布了新的文献求助10
6秒前
将将发布了新的文献求助10
6秒前
书晗完成签到,获得积分20
7秒前
7秒前
7秒前
研友_nEWrN8完成签到,获得积分10
8秒前
高冉完成签到 ,获得积分10
8秒前
8秒前
Lcrainy发布了新的文献求助10
8秒前
8秒前
在水一方应助奥特曼采纳,获得10
9秒前
10秒前
10秒前
10秒前
兔兔跑路发布了新的文献求助30
10秒前
BK发布了新的文献求助10
10秒前
10秒前
11秒前
薛厌完成签到,获得积分10
11秒前
SciGPT应助Kyr1e采纳,获得10
12秒前
12秒前
思思完成签到 ,获得积分10
12秒前
LEETHEO发布了新的文献求助10
12秒前
科研通AI5应助书晗采纳,获得10
12秒前
小小发布了新的文献求助10
12秒前
茴香发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805997
求助须知:如何正确求助?哪些是违规求助? 3350835
关于积分的说明 10351617
捐赠科研通 3066714
什么是DOI,文献DOI怎么找? 1684126
邀请新用户注册赠送积分活动 809309
科研通“疑难数据库(出版商)”最低求助积分说明 765432