The adsorption of PAHs on microplastics and desorption in the simulated human digestive system

微塑料 解吸 吸附 污染物 化学 环境化学 人类健康 有机化学 医学 环境卫生
作者
Guoqing Hou,Xiaoli Zhao,Tianhui Zhao,Xiaowei Wu,Shengyan Pu,Zhi Tang,Fengchang Wu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:473: 145157-145157 被引量:51
标识
DOI:10.1016/j.cej.2023.145157
摘要

Plastic debris is widely distributed in the aquatic environment and interacts with other pollutants. Microplastics (MPs) have a stronger binding ability with pollutants and could unconsciously ingested by humans, thus becoming the carrier of pollutants into the human body and affecting human health. In this study, polycyclic aromatic hydrocarbons (PAHs) were selected as model pollutants, polyethylene (PE) and polymethyl methacrylate (PMMA) were selected as research objects. The adsorption of PAHs on different kinds of MPs and desorption behavior in a simulated human digestive system were systematically studied. The results indicated that PAHs with higher molecular weight were more easily adsorbed on MPs, and the adsorption efficiency of PAHs on PE was 1.4–3.8 times higher than PMMA. The desorption experiments were conducted in simulated gastrointestinal fluid, the activity of enzymes directly affected the desorption of PAHs, and the desorption efficiency of PAHs from the surfaces of PMMA (0.7–41.6 %) was significantly higher than PE (0.8–27.7 %). For 15 PAHs, the desorption efficiency from the surfaces of PE decreased gradually with the number of PAHs rings, which was opposite to PMMA. Molecular dynamics simulation showed that enzymes in digestive fluid attenuated the interaction energy between MPs and PAHs, resulting in substantial desorption of PAHs from the surfaces of MPs. The risk assessment demonstrated that the carcinogenic risk of PAHs desorption from PMMA was higher than PE. This study helps understand the adsorption of PAHs on MPs and the potential health risks of accidental ingestion by humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助CRANE采纳,获得10
刚刚
new发布了新的文献求助80
1秒前
成就寄柔完成签到,获得积分10
1秒前
2秒前
2秒前
不明完成签到 ,获得积分10
3秒前
3秒前
daxiangqaq完成签到,获得积分10
3秒前
hexyz100发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
枫莘梓发布了新的文献求助20
4秒前
点点发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
小赵要开心完成签到,获得积分20
5秒前
lbx发布了新的文献求助10
5秒前
淡定蓝完成签到,获得积分20
6秒前
Akim应助苏东坡苏打水采纳,获得10
6秒前
小婷发布了新的文献求助10
7秒前
7秒前
意已完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
在水一方应助zmin采纳,获得10
9秒前
wpf7848发布了新的文献求助10
9秒前
10秒前
10秒前
577发布了新的文献求助10
10秒前
10秒前
欧阳发布了新的文献求助10
11秒前
weber完成签到 ,获得积分10
11秒前
12秒前
13秒前
moon发布了新的文献求助10
13秒前
吃吃吃不敢吃完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082