SFL-NET: Slight Filter Learning Network for Point Cloud Semantic Segmentation

计算机科学 点云 分割 云计算 人工智能 深度学习 滤波器(信号处理) 卷积神经网络 数据挖掘 机器学习 计算机视觉 操作系统
作者
Xu Li,Zhenxin Zhang,Yong Li,Mingmin Huang,Jiaxin Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:14
标识
DOI:10.1109/tgrs.2023.3313876
摘要

In recent years, point clouds have been widely used in powerline inspection, smart cities, autonomous driving, and other fields. Deep learning-based point cloud processing methods have achieved some impressive results in point cloud semantic segmentation, which has attracted more and more attention. However, there are still some problems that need to be solved, such as the efficiency of point cloud processing, inference speed, the parameter size of network, etc. We mainly study how to remove the redundancy of neural network for large-scale point cloud semantic segmentation. Now that the scale of point cloud dataset has rapidly increased, many recent works adapt to it via expanding the model capacity, which can lead to a sharp decline in the efficiency and speed of processing point cloud. To address the problem, we propose an efficient and lightweight deep neural network, namely Slight Filter Learning Network (SFL-Net), which can effectively extract semantic information and accelerate semantic segmentation for large-scale point clouds. The key to our approach is the proposed Slight Filter Convolution module (SFConv) and the Hourglass Block (HB). SFConv is designed to remove the redundancy of 3D convolution filters. HB can replace all multilayer perceptron (MLPs) in the neural network to expedite point cloud processing. To reduce the information loss during the subspace transformation, we introduce a new correlation loss function to constrain the parameter pairs in HB. On public indoor and outdoor datasets evaluation, SFL-Net performance reaches and even outperforms the state-of-the-art approaches. Moreover, the model parameters of SFL-Net are reduced 10× than the KPConv. The inference time of SFL-Net is only 45.8s for about 100 million points (N~10 8 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ghiocel完成签到,获得积分10
刚刚
1秒前
orixero应助xinlixi采纳,获得10
1秒前
1秒前
2秒前
2秒前
爆米花应助zhrcadd采纳,获得10
4秒前
小绿茶发布了新的文献求助10
4秒前
你好完成签到,获得积分10
4秒前
速溶baka完成签到,获得积分10
5秒前
舒适店员完成签到 ,获得积分10
5秒前
陶然共忘机完成签到 ,获得积分10
6秒前
从容飞阳发布了新的文献求助10
7秒前
8秒前
Singularity应助xupeng采纳,获得10
9秒前
Owen应助速溶baka采纳,获得10
10秒前
11秒前
11秒前
活力晓曼完成签到 ,获得积分10
12秒前
14秒前
14秒前
阡陌完成签到 ,获得积分10
15秒前
牧长一完成签到 ,获得积分0
15秒前
15秒前
xinlixi发布了新的文献求助10
18秒前
孙行行发布了新的文献求助10
18秒前
nanmu应助WenzhengLiao采纳,获得20
19秒前
lhy关注了科研通微信公众号
19秒前
传奇3应助xiamu采纳,获得10
19秒前
21秒前
Akim应助从容飞阳采纳,获得10
21秒前
小兰花发布了新的文献求助10
23秒前
哈哈尼完成签到,获得积分10
23秒前
23秒前
星辰大海应助hyl采纳,获得10
24秒前
lalala完成签到,获得积分10
27秒前
在水一方应助苏苏采纳,获得10
28秒前
28秒前
小小发布了新的文献求助10
28秒前
Xu发布了新的文献求助30
28秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897344
求助须知:如何正确求助?哪些是违规求助? 3441322
关于积分的说明 10821111
捐赠科研通 3166251
什么是DOI,文献DOI怎么找? 1749223
邀请新用户注册赠送积分活动 845222
科研通“疑难数据库(出版商)”最低求助积分说明 788508