Reconstructing annual XCO2 at a 1 km×1 km spatial resolution across China from 2012 to 2019 based on a spatial CatBoost method

温室气体 图像分辨率 环境科学 空间生态学 空间分布 遥感 比例(比率) 中国 卫星 共同空间格局 气候学 气象学 自然地理学 计算机科学 地图学 统计 人工智能 地理 地质学 数学 生态学 海洋学 考古 航空航天工程 工程类 生物
作者
Chao Wu,Yuechuang Ju,Shuo Yang,Zhenwei Zhang,Yixiang Chen
出处
期刊:Environmental Research [Elsevier BV]
卷期号:236: 116866-116866 被引量:17
标识
DOI:10.1016/j.envres.2023.116866
摘要

Long-time-series, high-resolution datasets of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) have great practical importance for mitigating the greenhouse effect, assessing carbon emissions and implementing a low-carbon cycle. However, the mainstream XCO2 datasets obtained from satellite observations have coarse spatial resolutions and are inadequate for supporting research applications with different precision requirements. Here, we developed a new spatial machine learning model by fusing spatial information with CatBoost, called SCatBoost, to fill the above gap based on existing global land-mapped 1° XCO2 data (GLM-XCO2). The 1-km-spatial-resolution dataset containing XCO2 values in China from 2012 to 2019 reconstructed by SCatBoost has stronger and more stable predictive power (confirmed with a cross-validation (R2 = 0.88 and RSME = 0.20 ppm)) than other traditional models. According to the estimated dataset, the overall national XCO2 showed an increasing trend, with the annual mean concentration rising from 392.65 ppm to 410.36 ppm. In addition, the spatial distribution of XCO2 concentrations in China reflects significantly higher concentrations in the eastern coastal areas than in the western inland areas. The contributions of this study can be summarized as follows: (1) It proposes SCatBoost, integrating the advantages of machine learning methods and spatial characteristics with a high prediction accuracy; (2) It presents a dataset of fine-scale and high resolution XCO2 over China from 2012 to 2019 by the model of SCatBoost; (3) Based on the generated data, we identify the spatiotemporal trends of XCO2 in the scale of nation and city agglomeration. These long-term and high resolution XCO2 data help understand the spatiotemporal variations in XCO2, thereby improving policy decisions and planning about carbon reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助10
刚刚
1秒前
斯文败类应助Nydia采纳,获得10
1秒前
2秒前
3654289完成签到,获得积分10
2秒前
2秒前
cloudmeadow发布了新的文献求助10
2秒前
泡泡发布了新的文献求助10
2秒前
3秒前
天秤狮子天生一对完成签到,获得积分10
3秒前
Owen应助x_zhiqi采纳,获得10
3秒前
Frisk12sfs发布了新的文献求助10
4秒前
单纯完成签到,获得积分20
4秒前
poohpooh发布了新的文献求助10
4秒前
俊逸的尔芙完成签到,获得积分10
4秒前
科研助手6应助songlf23采纳,获得10
4秒前
田様应助虚心的爆米花采纳,获得10
5秒前
wangxiaoqing完成签到,获得积分10
5秒前
在水一方应助楠楠小猪采纳,获得10
5秒前
在水一方应助ljc采纳,获得10
5秒前
5秒前
iebdus123发布了新的文献求助10
6秒前
晨曦完成签到,获得积分10
6秒前
无花果应助kook采纳,获得10
6秒前
科研通AI5应助五條小羊采纳,获得10
7秒前
7秒前
对方正在讲话完成签到,获得积分10
7秒前
7秒前
迅速勒发布了新的文献求助10
8秒前
8秒前
8秒前
漂亮芹菜完成签到,获得积分10
9秒前
SnaiLinsist发布了新的文献求助10
9秒前
嘤嘤嘤完成签到,获得积分10
10秒前
VonJane完成签到,获得积分10
10秒前
星辰大海应助Charlie采纳,获得10
10秒前
cheryl完成签到,获得积分10
10秒前
11秒前
12秒前
Micale发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907