亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MLATE: Machine learning for predicting cell behavior on cardiac tissue engineering scaffolds

组织工程 计算机科学 机器学习 人工智能 生物医学工程 工程类
作者
Saeed Rafieyan,Ebrahim Vasheghani‐Farahani,Nafiseh Baheiraei,Hamidreza Keshavarz
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106804-106804 被引量:19
标识
DOI:10.1016/j.compbiomed.2023.106804
摘要

Cardiovascular disease is one of the leading causes of mortality worldwide and is responsible for millions of deaths annually. One of the most promising approaches to deal with this problem, which has spread recently, is cardiac tissue engineering (CTE). Many researchers have tried developing scaffolds with different materials, cell lines, and fabrication methods to help regenerate heart tissue. Machine learning (ML) is one of the hottest topics in science and technology, revolutionizing many fields and changing our perspective on solving problems. As a result of using ML, some scientific issues have been resolved, including protein-folding, a challenging problem in biology that remained unsolved for 50 years. However, it is not well addressed in tissue engineering. An AI-based software was developed by our group called MLATE (Machine Learning Applications in Tissue Engineering) to tackle tissue engineering challenges, which highly depend on conducting costly and time-consuming experiments. For the first time, to the best of our knowledge, a CTE scaffold dataset was created by collecting specifications from the literature, including different materials, cell lines, and fabrication methods commonly used in CTE scaffold development. These specifications were used as variables in the study. Then, the CTE scaffolds were rated based on cell behaviors such as cell viability, growth, proliferation, and differentiation on the scaffold on a scale of 0-3. These ratings were considered a function of the variables in the gathered dataset. It should be stated that this study was merely based on information available in the literature. Then, twenty-eight ML algorithms were applied to determine the most effective one for predicting cell behavior on CTE scaffolds fabricated by different materials, compositions, and methods. The results indicated the high performance of XGBoost with an accuracy of 87%. Also, by implementing ensemble learning algorithms and using five algorithms with the best performance, an accuracy of 93% with the AdaBoost Classifier and Voting Classifier was achieved. Finally, the open-source software developed in this study was made available for everyone by publishing the best model along with a step-by-step guide to using it online at: https://github.com/saeedrafieyan/MLATE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22222应助Nina采纳,获得100
1秒前
newbiology完成签到 ,获得积分10
27秒前
Nina完成签到,获得积分10
49秒前
呆萌冰彤完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
归尘发布了新的文献求助10
1分钟前
LinglongCai完成签到 ,获得积分10
1分钟前
苹果果汁发布了新的文献求助10
1分钟前
P_Chem完成签到,获得积分10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Vegeta完成签到 ,获得积分10
3分钟前
3分钟前
Zephyr发布了新的文献求助10
3分钟前
Chouvikin完成签到,获得积分10
3分钟前
科研通AI6应助Zephyr采纳,获得10
3分钟前
Judy完成签到 ,获得积分0
3分钟前
Tushar完成签到,获得积分10
4分钟前
4分钟前
苹果果汁发布了新的文献求助10
4分钟前
4分钟前
4分钟前
球球子发布了新的文献求助10
4分钟前
大模型应助bzmuzxy采纳,获得10
4分钟前
WW完成签到,获得积分10
4分钟前
4分钟前
bzmuzxy完成签到,获得积分10
4分钟前
bzmuzxy发布了新的文献求助10
4分钟前
球球子完成签到,获得积分10
4分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助50
5分钟前
5分钟前
Hayat发布了新的文献求助20
5分钟前
Aaron完成签到 ,获得积分0
5分钟前
Demi_Ming完成签到,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280046
求助须知:如何正确求助?哪些是违规求助? 3808139
关于积分的说明 11929285
捐赠科研通 3455545
什么是DOI,文献DOI怎么找? 1895078
邀请新用户注册赠送积分活动 944383
科研通“疑难数据库(出版商)”最低求助积分说明 848203