miProBERT: identification of microRNA promoters based on the pre-trained model BERT

发起人 计算生物学 基因预测 小RNA 计算机科学 判别式 基因 生物 人工智能 遗传学 基因表达 基因组
作者
Xin Wang,Xin Gao,Guohua Wang,Dan Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:6
标识
DOI:10.1093/bib/bbad093
摘要

Abstract Accurate prediction of promoter regions driving miRNA gene expression has become a major challenge due to the lack of annotation information for pri-miRNA transcripts. This defect hinders our understanding of miRNA-mediated regulatory networks. Some algorithms have been designed during the past decade to detect miRNA promoters. However, these methods rely on biosignal data such as CpG islands and still need to be improved. Here, we propose miProBERT, a BERT-based model for predicting promoters directly from gene sequences without using any structural or biological signals. According to our information, it is the first time a BERT-based model has been employed to identify miRNA promoters. We use the pre-trained model DNABERT, fine-tune the pre-trained model on the gene promoter dataset so that the model includes information about the richer biological properties of promoter sequences in its representation, and then systematically scan the upstream regions of each intergenic miRNA using the fine-tuned model. About, 665 miRNA promoters are found. The innovative use of a random substitution strategy to construct a negative dataset improves the discriminative ability of the model and further reduces the false positive rate (FPR) to as low as 0.0421. On independent datasets, miProBERT outperformed other gene promoter prediction methods. With comparison on 33 experimentally validated miRNA promoter datasets, miProBERT significantly outperformed previously developed miRNA promoter prediction programs with 78.13% precision and 75.76% recall. We further verify the predicted promoter regions by analyzing conservation, CpG content and histone marks. The effectiveness and robustness of miProBERT are highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助fdk839375548采纳,获得10
1秒前
1秒前
bkagyin应助安详的未来采纳,获得10
2秒前
花杨梅发布了新的文献求助10
2秒前
3秒前
夏日备忘录完成签到 ,获得积分10
4秒前
CipherSage应助anbiii采纳,获得10
5秒前
jachin发布了新的文献求助10
5秒前
Ava应助纯情的尔槐采纳,获得10
5秒前
小镇青年完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
11秒前
12秒前
Iwan完成签到,获得积分10
13秒前
啦啦啦发布了新的文献求助10
14秒前
葡萄树发布了新的文献求助10
14秒前
anbiii发布了新的文献求助10
15秒前
15秒前
英姑应助花杨梅采纳,获得10
16秒前
17秒前
Iwan发布了新的文献求助10
18秒前
19秒前
22秒前
卓Celina发布了新的文献求助10
22秒前
萨克麦迪发布了新的文献求助10
24秒前
Vivian发布了新的文献求助10
25秒前
SciGPT应助壮观听白采纳,获得10
26秒前
星星收藏家完成签到,获得积分10
27秒前
赘婿应助llll采纳,获得10
29秒前
GG发布了新的文献求助10
32秒前
34秒前
隐形曼青应助科研通管家采纳,获得50
34秒前
甜甜玫瑰应助科研通管家采纳,获得10
35秒前
今后应助科研通管家采纳,获得10
35秒前
桐桐应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
我是老大应助科研通管家采纳,获得10
35秒前
NexusExplorer应助科研通管家采纳,获得10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814240
求助须知:如何正确求助?哪些是违规求助? 3358474
关于积分的说明 10394980
捐赠科研通 3075704
什么是DOI,文献DOI怎么找? 1689492
邀请新用户注册赠送积分活动 812987
科研通“疑难数据库(出版商)”最低求助积分说明 767416