清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A convolutional spiking neural network with adaptive coding for motor imagery classification

计算机科学 人工智能 可解释性 尖峰神经网络 卷积神经网络 模式识别(心理学) 特征提取 人工神经网络 运动表象 机器学习 脑-机接口 脑电图 心理学 精神科
作者
Xiaojian Liao,Yuli Wu,Zi Wang,Deheng Wang,Hongmiao Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:549: 126470-126470
标识
DOI:10.1016/j.neucom.2023.126470
摘要

Motor imagery (MI) signal classification is crucial for brain-computer interfaces (BCI). The third-generation neural network, spiking neural network (SNN), has rich neurodynamic properties in the spatiotemporal domain, and therefore it is more suitable for processing EEG signals. However, the feature extraction capability of the SNN previously applied to MI signal classification is limited by its structure, and the model’s classification accuracy is not comparable to the state-of-the-art algorithms. In this paper, we propose a spiking neural network model called SCNet, which combines the feature extraction capability of CNN with the biological interpretability of SNN, making the model structurally closer to the biological neuronal dynamical system and improving the classification accuracy. SCNet reduces information loss by adaptive coding with learnability and solves the training difficulties of spiking neural networks by surrogate gradient learning. We evaluated the performance of the proposed SCNet on three typically representative motor imagery datasets. The validation shows that the model outperforms state-of-the-art SNN-based MI classification methods and various ANN and machine learning methods. The experimental results demonstrate the generality and effectiveness of the proposed motor imagery EEG signal classification model. Better classification results can be obtained by designing a well-structured spiking neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
河豚不擦鞋完成签到 ,获得积分10
4秒前
8秒前
完美世界应助ivyjianjie采纳,获得10
19秒前
38秒前
40秒前
53秒前
ivyjianjie发布了新的文献求助10
58秒前
CipherSage应助激情的蜗牛采纳,获得10
1分钟前
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
1分钟前
1分钟前
彭于晏应助大方的自行车采纳,获得10
1分钟前
ivyjianjie完成签到,获得积分10
2分钟前
Skywings完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
白天亮完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
CherylZhao完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
秋秋完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061089
求助须知:如何正确求助?哪些是违规求助? 3599631
关于积分的说明 11432233
捐赠科研通 3323574
什么是DOI,文献DOI怎么找? 1827365
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818719